

This page
intentionally left

blank

Copyright © 2008, New Age International (P) Ltd., Publishers
Published by New Age International (P) Ltd., Publishers

All rights reserved.
No part of this ebook may be reproduced in any form, by photostat, microfilm,
xerography, or any other means, or incorporated into any information retrieval
system, electronic or mechanical, without the written permission of the publisher.
All inquiries should be emailed to rights@newagepublishers.com

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS
4835/24, Ansari Road, Daryaganj, New Delhi - 110002
Visit us at www.newagepublishers.com

ISBN (13) : 978-81-224-2879-7

Dedicated to

My Parents

(v)

This page
intentionally left

blank

PREFACE

The objective of this book is to develop in the reader the ability to analyze and design
the digital circuits. The increased uses of digital technology in objects used for day-to-day life
necessitate an in-depth knowledge of the subject for the professionals and engineers.

There are lots of references available on Switching Theory and Basic Digital Circuits,
which discuss various topics separately. But through this text our notion was to discover the
topics rather than to cover them. This comprehensive text fulfills the course requirement on
the subject of Switching Theory and Logic Design for B. Tech degree course in Electronics
Engineering of different technical Universities. This text is also bound to serve as a useful
reference book for various competitive examinations.

There is no special pre-requisite before starting this book. Each chapter of the book
starts with simple facts and concepts, and traverse through the examples & figures it uncovers
the advanced topics. The book has 11 well-organized chapters.

Chapter 1 deals with number systems and their arithmetic. It includes an exhaustive set
of solved examples and exercise to clarify the concepts. Chapter 2 introduces the basic
building blocks of digital electronics. It starts with basic postulates, Boolean algebra and then
introduces logic gates. It also deals with several types of implementation using logic gates.
For beginners we strongly recommend to work out this chapter twice before proceeding
further.

Chapter 3 deals with the Boolean function minimization techniques using Postulates and
Boolean Algebra, K-Map and Quine-McCluskey methods. Chapter 4 presents various
combinational logic design using the discrete logic gates and LSI & MSI circuits. This chapter
also deals with hazards and fault detection. Chapter 5 introduces the Programmable Logic
Devices. It also deals with basics of ROM, and then moves towards PLAs, PALs, CPLDs and
FPGA.

Chapter 6 introduces the clocked (synchronous) sequential circuits. It starts with
discussions on various flip-flops their triggering and flip-flop timings. It then deals with
analysis and design of synchronous circuits and concludes with sequence detector circuits.
Chapter 7 deals with shift registers and counters. It introduces the basic idea of shift registers
and then discusses various modes and application of shift registers. It then introduces the
various types and modes of counters and concludes with applications. Chapter 8 describes
introductory concept of finite state machines and Chapter 9 deals with asynchronous sequential

(vii)

circuits. It elaborates the analysis and design procedures with different considerations. Chapter
10 introduces the Threshold logic and its capabilities to realize switching functions. Chapter
11 describes the Algorithmic State Machine. It starts with basic concepts, design tools and
concludes with design using multiplexers and PLA.

All the topics are illustrated with clear diagram and simple language is used throughout
the text to facilitate easy understanding of the concepts. The author welcomes constructive
suggestion and comments from the readers for the improvement of this book at
singh_a_k@rediffmail.com

AUTHOR

(viii)

ACKNOWLEDGEMENT

This book is the result of the dedication and encouragement of many individuals. I would
like to thank my family members especially wife Menka and daughter Omanshi for their
patience and continuing support and parents for their blessings.

I am indebted to my friends and colleague especially Manish Tiwari and Arun Prakash
for their invaluable contribution in the project.

I thankfully acknowledge the contributions of various authors, data manuals, journals,
reference manuals etc. from where materials have been collected to enrich the contents of
the book.

Finally, I would like to thank the people at New Age International (P) Limited, especially
Mr. L.N. Mishra, who continues support and encourages writing and who made the book a
reality. Thanks are also due to Mr. Saumya Gupta, M.D. New Age International (P) Limited
for his involvement in the project.

In last but not the least by the blessing of almighty and good fortune I get such a
supporting and cooperative people around me who in one way or other help me to complete
this project in time.

ARUN KUMAR SINGH

(ix)

This page
intentionally left

blank

This page
intentionally left

blank

1.0 INTRODUCTION
Inside today’s computers, data is represented as 1’s and 0’s. These 1’s and 0’s might be

stored magnetically on a disk, or as a state in a transistor, co re, or vacuum tube. To perform
useful operations on these 1’s and 0’s one have to organize them together into patterns that
make up codes. Modern digital systems do not represent numeric values using the decimal
system. Instead, they typically use a binary or two’s complement numbering system. To
understand the digital system arithmetic, one must understand how digital systems represent
numbers.

This chapter discusses several important concepts including the binary, octal and hexadeci-
mal numbering systems, binary data organization (bits, nibbles, bytes, words, and double
words), signed and unsigned numbering systems. If one is already familiar with these terms
he should at least skim this material.

1.1 A REVIEW OF THE DECIMAL SYSTEM
People have been using the decimal (base 10) numbering system for so long that they

probably take it for granted. When one see a number like “123”, he don’t think about the
value 123; rather, he generate a mental image of how many items this value represents. In
reality, however, the number 123 represents:

1*102 + 2*101 + 3*100

or 100 + 20 + 3
Each digit appearing to the left of the decimal point represents a value between zero and

nine times an increasing power of ten. Digits appearing to the right of the decimal point
represent a value between zero and nine times an increasing negative power of ten. For
example, the value 123.456 means:

1*102 + 2*101 + 3*100 + 4*10–1 + 5*10–2 + 6*10–3

or 100 + 20 + 3 + 0.4 + 0.05 + 0.006

1.2 BINARY NUMBERING SYSTEM
Most modern digital systems operate using binary logic. The digital systems represents

values using two voltage levels (usually 0 v and +5 v). With two such levels one can represent

1

C
H

A
P

T
E

R 1
NUMBER SYSTEMS AND CODES

2 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

exactly two different values. These could be any two different values, but by convention we
use the values zero and one. These two values, coincidentally, correspond to the two digits
used by the binary numbering system.

1.2.1 Binary to Decimal Conversion
The binary numbering system works just like the decimal numbering system, with two

exceptions: binary only allows the digits 0 and 1 (rather than 0–9), and binary uses powers
of two rather than powers of ten. Therefore, it is very easy to convert a binary number to
decimal. For each “1” in the binary string, add 2n where “n” is the bit position in the binary
string (0 to n–1 for n bit binary string).

For example, the binary value 10102 represents the decimal 10 which can be obtained
through the procedure shown in the table 1:

Table 1

Binary No. 1 0 1 0

Bit Position (n) 3rd 2nd 1st 0th

Weight Factor (2n) 23 22 21 20

bit * 2n 1*23 0*22 1*21 0*20

Decimal Value 8 0 2 0

Decimal Number 8 + 0 + 2 + 0 = 10

All the steps in above procedure can be summarized in short as
1*23 + 0*22 + 1*21 + 0*20 = 8 + 0 + 2 + 0 = 1010

i.e.,
1. Multiply each digit of the binary number by its positional weight and then add up

the result.
2. If any digit is 0, its positional weight is not to be taken into account.

1.2.2 Decimal to Binary Conversion
The inverse problem would be to find out the binary equivalent of given decimal

number for instance let us find out binary of 1910 (decimal 19)

���������� �����	���
	�����	

�������� � ������ �
�����

�

������� � ������ � ������

������ � ����� � �������

������� � ������ � �������

������� � ������ � ���������

� � ����� � � � ����������������������
�
��������	����������������	����	��	��

NUMBER SYSTEMS AND CODES 3

Our final number is (10011)2.
i.e.,

1. Divide the decimal number by 2 producing a dividend and a remainder. This number
is the LSB (least significant bit of the desired binary number).

2. Again divide the dividend obtained above by 2. This produces another dividend and
remainder. The remainder is the next digit of the binary number.

3. Continue this process of division until the dividend becomes 0. The remainder
obtained in the final division is the MSB (most significant bit of the binary number).

1.2.3 Binary Formats
In the purest sense, every binary number contains an infinite number of digits (or bits

which is short for binary digits). Because any number of leading zero bits may precede the
binary number without changing its value. For example, one can represent the number seven
by:

 111 00000111 ..0000000000111 000000000000111

Often several values are packed together into the same binary number. For convenience,
a numeric value is assign to each bit position. Each bit is numbered as follows:

1. The rightmost bit in a binary number is bit position zero.

2. Each bit to the left is given the next successive bit number.

An eight-bit binary value uses bits zero through seven:

X7 X6 X5 X4 X3 X2 X1 X0

A 16-bit binary value uses bit positions zero through fifteen:

 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

Bit zero is usually referred to as the low order bit. The left-most bit is typically called
the high order bit. The intermediate bits are referred by their respective bit numbers. The
low order bit which is X0 is called LEAST SIGNIFICANT BIT (LSB). The high order bit or
left most bit. i.e., X15 is called MOST SIGNIFICANT BIT (MSB).

1.2.4 Data Organization
In pure mathematics a value may take an arbitrary number of bits. Digital systems, on the

other hand, generally work with some specific number of bits. Common collections are single bits,
groups of four bits (called nibbles), groups of eight bits (called bytes), groups of 16 bits (called
words), and more. The sizes are not arbitrary. There is a good reason for these particular values.

Bits
The smallest “unit” of data on a binary computer or digital system is a single bit. Bit,

an abbreviation for Binary Digit, can hold either a 0 or a 1. A bit is the smallest unit of
information a computer can understand. Since a single bit is capable of representing only two
different values (typically zero or one) one may get the impression that there are a very small
number of items one can represent with a single bit. That’s not true! There are an infinite
number of items one can represent with a single bit.

With a single bit, one can represent any two distinct items. Examples include zero or
one, true or false, on or off, male or female, and right or wrong. However, one are not limited

4 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

to representing binary data types (that is, those objects which have only two distinct
values). One could use a single bit to represent the numbers 321 and 1234. Or perhaps 6251
and 2. One could also use a single bit to represent the colours green and blue. One could
even represent two unrelated objects with a single bit. For example, one could represent
the colour red and the number 3256 with a single bit. One can represent any two different
values with a single bit. However, one can represent only two different values with a
single bit.

To confuse things even more, different bits can represent different things. For example,
one bit might be used to represent the values zero and one, while an adjacent bit might be
used to represent the values true and false. How can one tell by looking at the bits? The
answer, of course, is that one can’t. But this illustrates the whole idea behind computer data
structures: data is what one define it to be. If one uses a bit to represent a boolean (true/false)
value then that bit (by definition) represents true or false. For the bit to have any true
meaning, one must be consistent. That is, if one is using a bit to represent true or false at
one point in his program, he shouldn’t use the true/false value stored in that bit to represent
green or blue later.

Since most items one will be trying to model require more than two different values,
single bit values aren’t the most popular data type used. However, since everything else
consists of groups of bits, bits will play an important role in programs. Of course, there are
several data types that require two distinct values, so it would seem that bits are important
by themselves. However, individual bits are difficult to manipulate, so other data types are
often used to represent boolean values.

Nibbles
A nibble is a collection of four bits. It wouldn’t be a particularly interesting data structure

except for two items: BCD (binary coded decimal) numbers and hexadecimal numbers. It
takes four bits to represent a single BCD or hexadecimal digit. With a nibble, one can
represent up to 16 distinct values. In the case of hexadecimal numbers, the values 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F are represented with four bits (see “The
Hexadecimal Numbering System”). BCD uses ten different digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
and requires four bits. In fact, any sixteen distinct values can be represented with a
nibble, but hexadecimal and BCD digits are the primary items we can represent with a
single nibble.

Bytes
Computer memory must be able to store letters, numbers, and symbols. A single bit by

itself cannot be of much use. Bits are combined to represent some meaningful data. A group
of eight bits is called a byte. It can represent a character and is the smallest addressable
datum (data item) on the most of the digital systems (e.g. 80 × 86 microprocessor). The most
important data type is the byte. Main memory and input/output addresses on the 80 × 86 are
all byte addresses. This means that the smallest item that can be individually accessed by an
80 × 86 program is an eight-bit value. To access anything smaller requires that you read the
byte containing the data and mask out the unwanted bits. The bits in a byte are normally
numbered from zero to seven using the convention in Fig. 1.1.

Bit 0 is the low order bit or least significant bit, bit 7 is the high order bit or most
significant bit of the byte. All other bits are referred by their number.

NUMBER SYSTEMS AND CODES 5

7 6 5 4 3 2 1 0

Fig. 1.1 Bit numbering in a byte

Note: That a byte also contains exactly two nibbles (see Fig. 1.2).

7 6 5 4 3 2 1 0

High Nibble Low Nibble

Fig. 1.2 The two nibbles in a byte

Bits 0–3 comprise the low order nibble, bits 4–7 form the high order nibble. Since a byte
contains exactly two nibbles, byte values require two hexadecimal digits.

Since a byte contains eight bits, it can represent 28, or 256, different values. Generally,
a byte is used to represent numeric values in the range 0.255, signed numbers in the range
–128.. + 127 (refer “Signed binary representation”). Many data types have fewer than 256
items so eight bits is usually sufficient.

For a byte addressable machine, it turns out to be more efficient to manipulate a whole
byte than an individual bit or nibble. For this reason, most programmers use a whole byte
to represent data types that require no more than 256 items, even if fewer than eight bits
would suffice. For example, we’ll often represent the boolean values true and false by 000000012
and 000000002 (respectively).

Probably the most important use for a byte is holding a character code. Characters typed
at the keyboard, displayed on the screen, and printed on the printer all have numeric values.

Words
A word is a group of 16 bits. Bits in a word are numbered starting from zero on up to

fifteen. The bit numbering appears in Fig. 1.3.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 1.3 Bit numbers in a word

Like the byte, bit 0 is the low order bit and bit 15 is the high order bit. When referencing
the other bits in a word use their bit position number.

Notice that a word contains exactly two bytes. Bits 0 through 7 form the low order byte,
bits 8 through 15 form the high order byte (see Fig. 1.4).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

High Byte Low Byte

Fig. 1.4 The two bytes in a word

6 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Naturally, a word may be further broken down into four nibbles as shown in Fig. 1.5.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nibble 3 Nibble 2 Nibble 1 Nibble 0
Higher Nibble Lower Nibble

Fig. 1.5 Nibbles in a word

Nibble zero is the low order nibble in the word and nibble three is the high order nibble
of the word. The other two nibbles are “nibble one” and “nibble two”.

With 16 bits, 216 (65,536) different values can be represented. These could be the values
in the range 0 to 65,535 (or –32,768 to +32,767) or any other data type with no more than
65,536 values.

Words can represent integer values in the range 0 to 65,535 or –32,768 to 32,767.
Unsigned numeric values are represented by the binary value corresponding to the bits in the
word. Signed numeric values use the two’s complement form for numeric values (refer
“Signed binary representation”).

Double Words
A double word is exactly what its name implies, a pair of words. Therefore, a double word

quantity is 32 bits long as shown in Fig. 1.6.

31 23 15 7 0

Fig. 1.6 Bit numbers in a double word

This double word can be divided into a high order word and a low order word, or four
different bytes, or eight different nibbles (see Fig. 1.7).

Fig. 1.7 Nibbles, bytes, and words in a double word

31 23 15 7 0

7 6 5 4 3 2 1 0
Higher Nibble Lower Nibble

Higher Byte Byte 2 Byte 1 Lower Byte

31 23 15 7 0

31 23 15 7 0

High order word Low order word

NUMBER SYSTEMS AND CODES 7

1.3 OCTAL NUMBERING SYSTEM
The octal number system uses base 8 instead of base 10 or base 2. This is sometimes

convenient since many computer operations are based on bytes (8 bits). In octal, we have 8
digits at our disposal, 0–7.

Decimal Octal

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 10

9 11

10 12

11 13

12 14

13 15

14 16

15 17

16 20

1.3.1 Octal to Decimal, Decimal to Octal Conversion
Converting octal to decimal is just like converting binary to decimal, except instead of

powers of 2, we use powers of 8. That is, the LSB is 80, the next is 81, then 82, etc.

To convert 172 in octal to decimal:

1 7 2

82 81 80

Weight = 1*82 + 7*81 + 2*80

= 1*64 + 7*8 + 2*1

= 12210

Converting decimal to octal is just like converting decimal to binary, except instead of
dividing by 2, we divide by 8. To convert 122 to octal:

122/8 = 15 remainder 2

15/8 = 1 remainder 7

1/8 = 0 remainder 1

= 1728

8 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

If using a calculator to perform the divisions, the result will include a decimal fraction
instead of a remainder. The remainder can be obtained by multiplying the decimal fraction
by 8. For example, 122/8 = 15.25. Then multiply 0.25 * 8 to get a remainder of 2.

1.3.2 Octal to Binary, Binary to Octal Conversion
Octal becomes very useful in converting to binary, because it is quite simple. The

conversion can be done by looking at 3 bit combinations, and then concatenating them
together. Here is the equivalent for each individual octal digit and binary representation:

Octal Binary
1 001
2 010
3 011
4 100
5 101
6 110
7 111

To convert back and forth between octal and binary, simply substitute the proper pattern
for each octal digit with the corresponding three binary digits.

For example, 372 in octal becomes 010 111 010 or 010111010 in binary.

777 in octal becomes 111 111 111 or 111111111 in binary.

The same applies in the other direction:

100111010 in binary becomes 100 111 010 or 472 in octal.

Since it is so easy to convert back and forth between octal and binary, octal is sometimes
used to represent binary codes. Octal is most useful if the binary code happens to be a
multiple of 3 bits long. Sometimes it is quicker to convert decimal to binary by first convert-
ing decimal to octal, and then octal to binary.

1.4 HEXADECIMAL NUMBERING SYSTEM
The hexadecimal numbering system is the most common system seen today in repre-

senting raw computer data. This is because it is very convenient to represent groups of 4 bits.
Consequently, one byte (8 bits) can be represented by two groups of four bits easily in
hexadecimal.

Hexadecimal uses a base 16 numbering system. This means that we have 16 symbols to
use for digits. Consequently, we must invent new digits beyond 9. The digits used in hex are
the letters A, B, C, D, E, and F. If we start counting, we get the table below:

Decimal Hexadecimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100
.....Contd

NUMBER SYSTEMS AND CODES 9

Decimal Hexadecimal Binary
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
16 10 10000
17 11 10001

 18 …

1.4.1 Hex to Decimal and Decimal to Hex Conversion
Converting hex to decimal is just like converting binary to decimal, except instead of

powers of 2, we use powers of 16. That is, the LSB is 160, the next is 161, then 162, etc.
To convert 15E in hex to decimal:

1 5 E
162 161 160

Weight = 1*162 + 5*161 + 14*160

= 1*256 + 5*16 + 14*1
= 35010

Converting decimal to hex is just like converting decimal to binary, except instead of
dividing by 2, we divide by 16. To convert 350 to hex:

350/16 = 21 remainder 14 = E
21/16 = 1 remainder 5
1/16 = 0 remainder 1

So we get 15E for 350.
Again, note that if a calculator is being used, you may multiple the fraction remainder by

16 to produce the remainder. 350/16 = 21.875. Then to get the remainder, 0.875 * 16 = 14.

1.4.2 Hex to Binary and Binary to Hex Conversion
Going from hex to binary is similar to the process of converting from octal to binary. One

must simply look up or compute the binary pattern of 4 bits for each hex code, and concatenate
the codes together.

To convert AE to binary:
A = 1010
E = 1110

10 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

So AE in binary is 1010 1110

The same process applies in reverse by grouping together 4 bits at a time and then look
up the hex digit for each group.

Binary 11000100101 broken up into groups of 4:

0110 0010 0101 (note the 0 added as padding on the MSB to get up to 4 bits)

6 2 5

= 62516

1.4.3 Hex to Octal and Octal to Hex Conversion
These conversions are done through the binary conversion. Recall that, a group of 4-bits

represent a hexadecimal digit and a group of 3-bits represent an octal digit.

Hex to Octal Conversion
1. Convert the given hexadecimal number into binary.

2. Starting from right make groups of 3-bits and designate each group an octal digit.

Example. Convert (1A3)16 into octal.

Solution.

1. Converting hex to binary

(1 A 3)16 = ����

�

����

�

����

�

2. Grouping of 3-bits

(1A3)16 = ��� ��� ���

� � �

���

�

so (1A3)16 = (0643)8≡ (643)8

Octal to Hex Conversion
1. Convert the given octal number into binary.

2. Starting from right make groups of 4-bits and designate each group as a Hexadeci-
mal digit.

Example. Convert (76)8 into hexadecimal.

Solution. 1. Converting octal to binary

(76)8 = ��� ���

� �

2. Grouping of 4-bits

(76)8 = �� ���� ����

� � �

����

�

∴ (76)8 = (3E)16

NUMBER SYSTEMS AND CODES 11

1.5 RANGE OF NUMBER REPRESENTATION
The range of numbers that can be represented is determined by the number of digits (or

bits in binary) used to represent a number. Let us consider decimal number system to
understand the idea.

Highest decimal number represented by 2 digits = 99

But 99 = 100 – 1 = 102 – 1. The power of 10 (in 102 – 1)
indicates that it is 2 digit representation.

So, highest 2-digit decimal number = 102 – 1

and lowest 2-digit decimal number = 00

Thus, range of 2-digit decimal number = 00 to 102 – 1

It is evident that a total of 100 or 102 numbers (00 to 99) can be represented by 2-digits.

So, we conclude that for n-digit representation

range of decimal numbers = 0 to 10n – 1

highest decimal number = 10n – 1

total numbers that can be represented = 10n

Note that highest n-digit decimal number can be represented by n 9s (i.e., 10 – 1) e.g.,
highest 2 digit decimal number is represented by 2 9s which is 99.

The above discussion can be generalized by taking base-r number system instead of base-
10 (or decimal) number system. Thus, with n-digit representation–

Total distinct numbers that can be represented = rn

Highest decimal Number = rn – 1

Range of Numbers = 0 to rn – 1

where, r = base or radix of Number system

n = Number of digits used for representation

It is worth noting that highest decimal number can be represented by n (r – 1)s in base-
r system.

Let us consider the base-2 or binary number system. Thus 2n distinct quantities, in the
range 0 to 2n – 1, can be represented with n-bit. If n = 4-bits, total distinct quantities (i.e.,
numbers) that can be represented

= N = 24 = 16

the range of numbers = 0 to 24 – 1 = 0 to 15

and Highest decimal number = 24 – 1 = 15

The highest decimal number 15, is represented by our 1s i.e., 1111. The range 0 to 15
corresponds to 0000 to 1111 in binary.

If we want to represent a decimal number M using n-bits, then the number M should
lie in the range 0 to 2n–1 i.e.,

0 < M < 2n – 1

or 2n – 1 > M

12 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

or 2n > M + 1

or n > log2 (M + 1)

where M and n are integers.

In the similar way, if we want to represent N distinct quantities in binary then N should
not exceed 2n.

2n > N
or n > log2N Both n and N are integers

Example 1. How many bits are required to represent

(i) 16-distinct levels

(ii) 10 distinct levels

(iii) 32 distinct levels

Solution. (i) We have, 2n > N

or 2n > 16 ⇒ 2n > 24

or n > 4 ⇒ n = 4

Thus, atleast 4-bits are required to represent 16 distinct levels, ranging from 0 to 15.

(ii) We have, n > log2 N

or n > log210 ⇒ n > 3.32

but n should be integer, so take next higher integer value

i.e., n = 4 bits
So, minimum 4-bits are required to represent 10 distinct levels, ranging from 0 to 9.
(iii) n > log2 N

or n > log232 ⇒ n > log2 25

or n > 5 ⇒ n = 5
So, minimum 5-bits are required to represent 32 levels, ranging from 0 to 31.
Example 2. Calculate the minimum no. of bits required to represent decimal numbers
(i) 16 (ii) 63
Solution. (i) We have, n > log2(M + 1) where M = given number

so n > log2(16 + 1) ⇒ n > log2(17)
or n > 4.09

taking next higher integer i.e., n = 5 bits.
Thus, atleast 5-bits are required to represent decimal number 16.
(ii) n > log2 (M + 1)

n > log2 (63 + 1) ⇒ n > log264
or n > log226 or n > 6 bits

So, minimum 6-bits are needed to represent decimal 63.
Example 3. In a base-5 number system, 3 digit representation is used. Find out
(i) Number of distinct quantities that can be represented.

(ii) Representation of highest decimal number in base-5.

NUMBER SYSTEMS AND CODES 13

Solution. Given radix of number system r = 5
digits of representation n = 3
digits in base-5 would be 0, 1, 2, 3, 4
(i) we have relation

no of distinct quantities = rn

= 53 = 125
So, 125 distinct levels (quantities) can be represented.
(ii) Highest decimal Number can be represented by n(r – 1)s i.e., by three 4s.

So, highest decimal Number = 444.

1.6 BINARY ARITHMETIC
The binary arithmetic operations such as addition, subtraction, multiplication and divi-

sion are similar to the decimal number system. Binary arithmetics are simpler than decimal
because they involve only two digits (bits) 1 and 0.

Binary Addition
Rules for binary addition are summarized in the table shown in Fig. 1.8.

Augend Addend Sum Carry Result

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 0 1 10

Fig. 1.8 Rules for binary addition

As shown in 4th row adding 1 to 1 gives 9 carry which, is given to next binary position,
similar to decimal system. This is explained in examples below:

Example 1. (i) Add 1010 and 0011 (ii) Add 0101 and 1111

Solution.

Binary Subtraction

The rules for binary subtraction is summarized in the table shown in Fig. 1.9.

Minuend Subtrahend Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

Fig. 1.9 Rules for binary subtraction

14 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The process of subtraction is very similar to decimal system in which if a borrow is
needed it is taken from next higher binary position, as shown in row 2.

Example 2. Subtract 0100 from 1011

Solution. 			�																																				
����

�������

����������

� � � � ����������

� �� � �� ��

←
←

− ←
←

� � � �

� � � �

↑ ↑ ↑ ↑

There is no problem in column C0 and C1. In column C2 we made 0 –1, so result = 1 and
borrow = 1. Then this borrow = 1 is marked in column C3. So result in column C2 is 1. Then
in column C3 we first made 1 – 0 to get result = 1 and then we subtracted borrow from result,
thus we get 0 in column C3.

“Thus in subtraction, first subtract the subtrahend bit from minuend and then subtract
borrow from the result.”

Watch out the next example to further clarify the concept.

Example 3. Subtract 0110 from 1001

Solution. 			�																																				
����

�������

����������

� � � � ����������

� �� � �� ��

←
←

− ←
←

� � � �

� � � �

↑ ↑ ↑ ↑

�

Here, in column C1 we get difference = 1 and borrow = 1. This borrow is marked in
column C2, and difference = 1 is shown in the column C1. We now come to column C2. Here
by 0–1 we get difference = 1 and borrow = 1. Now this borrow is marked in column C3. But
in column C2 already we have 9 borrow so this borrow = 1 is subtracted from difference
= 1 which results in 0. Thus the difference = 0 is marked in column C2.

In the similar way we process column C3 and we get difference = 0 in column C3.

Binary Multiplication
Binary multiplication is also similar to decimal multiplication. In binary multiplication if

multiplier bit is 0 then partial product is all 0 and if multiplier bit is 1 then partial product
is 1. The same is illustrated in example below:

Example 4.

NUMBER SYSTEMS AND CODES 15

Binary Division

Binary division is also similar to decimal division as illustrated in example below:

Example 5.

� � � � � �

� � � �

� � � � � �

� � � �

� � � �

� � � �������� ��������

� � �

1.7 NEGATIVE NUMBERS AND THEIR ARITHMETIC
So far we have discussed straight forward number representation which are nothing but

positive number. The negative numbers have got two representation

(i) complement representation.

(ii) sign magnitude representation.

We will discuss both the representation in following subsections.

1.7.1 1’s and 2’s Complement
These are the complements used for binary numbers. Their representation are very

important as digital systems work on binary numbers only.

1’s Complement
1’s complement of a binary number is obtained simply by replacing each 1 by 0 and each 0

by 1. Alternately, 1’s complement of a binary can be obtained by subtracting each bit from 1.

Example 1. Find 1’s complement of (i) 011001 (ii) 00100111

Solution. (i) Replace each 1 by 0 and each 0 by 1

0 1 1 0 0 1

↓ ↓ ↓ ↓ ↓ ↓
1 0 0 1 1 0

So, 1’s complement of 011001 is 100110.

(ii) Subtract each binary bit from 1.

1 1 1 1 1 1 1 1

– 0 0 1 0 0 1 1 1

1 1 0 1 1 0 0 0 ← 1’s complement

one can see that both the method gives same result.

2’s Complement
2’s complement of a binary number can be obtained by adding 1 to its 1’s complement.

Example 1. Find 2’s complement of (i) 011001 (ii) 0101100

16 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Solution. (i) 0 1 1 0 0 1 ← Number

1 0 0 1 1 0 ← 1’s complement

+ 1 ← Add 1 to 1’s complement

1 0 0 1 1 1 ← 2’s complement

(ii) 0 1 0 1 1 0 0 ← Number

1 0 1 0 0 1 1 ← 1’s complement

+ 1 ← Add 1 to 1’s complement

1 0 1 0 1 0 0 ← 2’s complement

There is an efficient method to find 2’s complement based upon the observation made on the
above 2 examples. Consider the number and its 2’s complement of example (ii) as shown below:

� � � �		 � � �

� � � �		 � � �

� �
��!"#�!���

��!�	��
��!���

$�!���

% �	��!"#�!���

Fig. 1.10 Number and its 2’s complement

The above figure clearly shows that to find 2’s complement of a binary number start from
right towards left till the first 1 appears in the number. Take these bits (including first 1) as
it is and take 1’s complement of rest of the bits. Workout below examples to enhance your
understanding.

Example 2. Find 2’s complement of (i) 101100 (ii) 10010 (iii) 01001

Solution. (i) Number = 101100

� � � � � �

� � � � � �

�����	
��
��

$&�
�'

% �	��!"#�!���

(����	�	���!	��)��

(ii) Number = 10010

� � � � �

� � � � �

�����	
��
��

$&�
�'

% �	��!"#�!���

(����	�	���!	��)��

(iii) Number = 01001

� � � � �

� � � � �

*�+�	� �
��!"#�!���

$&�
�'

% �	��!"#�!���

(����	�	���!	��)��

��	��	��

NUMBER SYSTEMS AND CODES 17

It is interesting to note that taking complement twice leaves the number as it is. This
is illustrated in below Fig. 1.11.

���� % �
��!"#�!���

���� % �
��!"#�!���

����

Fig. 1.11 Effect of taking complement twice

To represent a negative number using complements the process involves two steps.

(1) obtain the binary representation of equivalent positive number for given negative
number. e.g., if given number is –2 then obtain binary representation of +2.

(2) Take the appropriate complement of representation obtained in step 1.

Example 3. Obtain 1’s and 2’s complement representation of –5 and –7.

Solution. (i) –5

1. binary of +5 = (0101)2
2. 1’s complement of (0101)2 = (1010)2 ← Represents (–5)10

2’s complement of (0101)2 = (1011)2 ← Represents (–5)10

(ii) –7

1. binary of +7 = (0111)2
2. 1’s complement of (0111)2 = (1000)2 Represents (–7)10

2’s complement of (0111)2 = (1001)2 Represents (–7)10

Note that in above two examples, for positive numbers we obtained such a binary
representation in which MSB is 0. e.g., for +7 we obtained (0111)2 not just (111)2. It is because
for all positive numbers MSB must be 0 and for negative numbers MSB should be 1. This will
be more clear in subsection 1.7.3.

1.7.2 Subtraction Using 1’s and 2’s Complement
Before using any complement method for subtraction equate the length of both minuend

and subtrahend by introducing leading zeros.

1’s complement subtraction following are the rules for subtraction using 1’s complement.

1. Take 1’s complement of subtrahend.

2. Add 1’s complement of subtrahend to minuend.

3. If a carry is produced by addition then add this carry to the LSB of result. This is
called as end around carry (EAC).

4. If carry is generated from MSB in step 2 then result is positive. If no carry
generated result is negative, and is in 1’s complement form.

Example 1. Perform following subtraction using 1’s complement.

(i) 7 – 3 (ii) 3 – 7

Solution. (i) 7 – 3: binary of 7 = (0111)2
binary of 3 = (0011)2

both numbers have equal length.

Step 1. 1’s complement of (0011)2 = (1100)2

18 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Step 2. Perform addition of minuend and 1’s complement of subtrahend

Step 3. EAC

� � � �

, � � � �

� � � � �

, �

� � � �

(���#
����-

.�/

.0�	��	� �	��!"#�!���	��	,	�/

.���/

Step 4. Since carry is generated in step 2 the result is positive.

since (0100)2 = (4)10

so, result = +4 which is correct answer

(ii) 3 – 7:

binary of 3 = 0011

binary of 7 = 0111

Step 1. 1’s complement of 0111 = 1000

Step 2. Perform addition of minuend and 1’s complement of subtrahend

Step 3. No carry produced so no EAC operation.

Step 4. Since no carry produced in step 2, result is negative and is in complemented
form. So we must take 1’s complement of result to find correct magnitude of result.

1’s complement of result (1011)2 = (0100)2
so, final result = –(0100)2 or –(4)10

Note that when (in example (ii) the result was negative (step 2), MSB of the result was
1. When (in example (i)) the result was positive the MSB was 0. The same can be observed
in 2’s complement subtraction.

2’s complement Subtraction Method of 2’s complement is similar to 1’s complement
subtraction except the end around carry (EAC). The rules are listed below:

1. Take 2’s complement of subtrahend.

2. Add 2’s complement of subtrahend to minuend.

3. If a carry is produced, then discard the carry and the result is positive. If no carry
is produced result is negative and is in 2’s compliment form.

Example 2. Perform following subtraction using 2’s complement.

(i) 7 – 5 (ii) 5 – 7

Solution. (i) 7 – 5: binary of 7 = (0111)2
binary of 5 = (0101)2

Step 1. 2’s complement of subtrahend (=0101)2 = (1011)2.

Step 2. Perform addition of minuend and 2’s complement of subtrahend.

O
QP
�����������	��
�������

������������������

NUMBER SYSTEMS AND CODES 19

Step 3. Since a final carry is produced in step 2 (which is discarded) the result is positive.
So,

result = (0010)2 = (2)10

(ii) 5 – 7:

binary of 5 = (0101)2
binary of 7 = (0111)2

Step 1. 2’s complement of subtrahend (= 0111) = 1001.

Step 2. Addition of minuend and 2’s complement of subtrahend.

Step 3. Since final carry is not generated in step 2, the result is negative and is in 2’s
complement form. So we must take 2’s complement of result obtained in step 2 to find correct
magnitude of result.

2’s complement of result (1110)2 = (0010)2
so, final result = – (0010)2 = – (2)10

1.7.3 Signed Binary Representation
Untill now we have discussed representation of unsigned (or positive) numbers, except

one or two places. In computer systems sign (+ve or –ve) of a number should also be
represented by binary bits.

The accepted convention is to use 1 for negative sign and 0 for positive sign. In signed
representation MSB of the given binary string represents the sign of the number, in all types
of representation. We have two types of signed representation:

1. Signed Magnitude Representation

2. Signed Complement Representation

In a signed-magnitude representation, the MSB represent the sign and rest of the bits
represent the magnitude. e.g.,

Note that positive number is represented similar to unsigned number. From the example
it is also evident that out of 4-bits, only 3-bits are used to represent the magnitude. Thus in

20 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

general, n – 1 bits are used to denote the magnitude. So, the range of signed representation
becomes –(2n–1 – 1) to (2n–1 – 1).

In a signed-complement representation the positive numbers are represented in true
binary form with MSB as 0. Whereas the negative numbers are represented by taking
appropriate complement of equivalent positive number, including the sign bit. Both 1’s and
2’s complements can be used for this purpose e.g.,

+5 = (0101)2
–5 = (1010)2 ←in 1’s complement

= (1011)2 ←in 2’s complement

Note that in signed complement representation the fact remains same that n – 1 bits are
used for magnitude. The range of numbers

In 1’s complement 0 to (2n–1 – 1) Positive Numbers

– 0 to –(2n–1 – 1) Negative Numbers

In 2’s complement 0 to (2n–1 – 1) Positive Numbers

– 1 to –2n–1 Negative Numbers

To illustrate the effect of these 3 representations, we consider 4-bit binary representation
and draw the below table. Carefully observe the differences in three methods.

Decimal Signed 1’s complement 2’s complement
Magnitude

+0 0 0 0 0 0 0 0 0 0 0 0 0

+1 0 0 0 1 0 0 0 1 0 0 0 1

+2 0 0 1 0 0 0 1 0 0 0 1 0

+3 0 0 1 1 0 0 1 1 0 0 1 1

+4 0 1 0 0 0 1 0 0 0 1 0 0

+5 0 1 0 1 0 1 0 1 0 1 0 1

+6 0 1 1 0 0 1 1 0 0 1 1 0

+7 0 1 1 1 0 1 1 1 0 1 1 1

–8 — — 1 0 0 0

–7 1 1 1 1 1 0 0 0 1 0 0 1

–6 1 1 1 0 1 0 0 1 1 0 1 0

–5 1 1 0 1 1 0 1 0 1 0 1 1

–4 1 1 0 0 1 0 1 1 1 1 0 0

–3 1 0 1 1 1 1 0 0 1 1 0 1

–2 1 0 1 0 1 1 0 1 1 1 1 0

–1 1 0 0 1 1 1 1 0 1 1 1 1

–0 1 0 0 0 1 1 1 1 —

Fig. 1.12 Different signed representation

NUMBER SYSTEMS AND CODES 21

From the table, it is evident that both signed Magnitude and 1’s complement methods
introduce two zeros +0 and – 0 which is awkward. This is not the case with 2’s complement.
This is one among the reasons that why all the modern digital systems use 2’s complement
method for the purpose of signed representation. From the above table, it is also evident that

in signed representation
�

�

�

 positive numbers and
�

�

�

 negative numbers can be represented

with n-bits. Out of 2n combinations of n-bits, first
�

�

�

 combinations are used to denote the

positive numbers and next
�

�

�

 combinations represent the negative numbers.

Example 1. In a signed representation given binary string is (11101)2. What will be the
sign and magnitude of the number represented by this string in signed magnitude, 1’s
complement and 2’s complement representation.

Solution.

The number N = (11101)2
since MSB = 1 the given number is negative.

(i) In signed Magnitude MSB denotes sign and rest of the bits represent magnitude. So,

(ii) In 1’s complement if number is negative (i.e., MSB = 1) then the magnitude is
obtained by taking 1’s complement of given number.

1’s complement of (11101)2 = (00010)2
so, (11101)2 = –2 in 1’s complement.

(iii) In 2’s complement if number is negative (i.e., MSB = 1) then magnitude is obtained
by taking 2’s complement of given number.

2’s complement of (11101)2 = (00011)2
= 3

so, (11101)2 = –3 in 2’s complement.
Example 2. Obtain an 8-bit representation of –9 in signed Magnitude, 1’s complement

and 2’s complement representation.
Solution. We first find binary of 9 i.e., (9)10 = (1001)2

Next we represent 9 using 8-bits. So, N = (00001001)2

= (9)10

(i) In signed Magnitude, MSB shows sign and rest of the bits shows true magnitude. So,
(–9)10 = (10001001)2

(ii) In 1’s complement, negative number is represented by taking 1’s complement of
positive number. So,

(–9)10 = 1’s complement of (00001001)2

= (11110110)2

22 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(iii) In 2’s complement

(–9)10 = 2’s complement of (00001001)2

= (11110111)2

1.7.4 Arithmetic Overflow
When the result of an arithmetic operation requires n+1 bits, upon operating on n-bits

number, an overflow occurs. Alternately, if result exceeds the range 0 to 2n – 1, an overflow
occurs.

Let us consider the addition of two 4-bit numbers

Thus, addition of two 4-bits numbers requires 5-bits (n+1 bits) to represent the sum.
Alternately, the result of addition of 4-bits, falls outside the range 0 to 15 (i.e., 0 to 24–1).
Thus, overflow has occured.

In case of signed arithmetic the overflow causes the sign bit of the answer to change.
In this case an overflow occurs if the result does not lie in the range –2n–1 to 2n–1 – 1. In
signed arithmetic overflow can occur only when two positive numbers or two negative num-
bers are added.

Let us consider 4-bit signed 2’s complement representation.

1. Addition of two positive numbers +6 and +5

Since, MSB of result is 1, if reflects a negative result which is incorrect. It happened
because overflow has changed the sign of result.

2. Addition of two negative numbers –6 and –5

In 2’s complement if a carry is generated after the addition then carry is discarded and
result is declared positive. Thus, result = (0101)2 = +5 which is wrong, because addition of
two negative numbers should give a negative result. This happened due to overflow.

Note that overflow is a problem that occurs when result of an operation exceeds the
capacity of storage device. In a computer system, the programmer must check the overflow
after each arithmetic operation.

1.7.5 9’s and 10’s Complement
9’s and 10’s complements are the methods used for the representation of decimal num-

bers. They are identical to the 1’s and 2’s complements used for binary numbers.

NUMBER SYSTEMS AND CODES 23

9’s complement: 9’s complement of a decimal number is defined as (10n – 1) – N, where n
is no. of digits and N is given decimal numbers. Alternately, 9’s complement of a decimal number
can be obtained by subtracting each digit from 9.

9’s complement of N = (10n–1) – N.
Example 1. Find out the 9’s complement of following decimal numbers.
(i) 459 (ii) 36 (iii) 1697
Solution. (i) By using (10n–1) – N; But, n = 3 in this case
So, (10n–1) – N = (103 – 1) – 459 = 540

Thus, 9’s complement of 459 = 540
(ii) By subtracting each digit from 9

9 9
–3 6
6 3

So, 9’s complement of 36 is 63.
(iii) We have N = 1697, so n = 4
Thus, 10n–1 = 104 – 1 = 9999
So, (10n–1) – N = (104–1) – 1697 = 9999 – 1697

= 8302
Thus, 9’s complement of 1697 = 8302

10’s complement: 10’s complement of a decimal number is defined as 10n – N.
10’s complement of N = 10n – N

but 10n – N = (10n – 1) – N + 1
= 9’s complement of N + 1

Thus, 10’s complement of a decimal number can also be obtained by adding 1 to its 9’s
complement.

Example 2. Find out the 10’s complement of following decimal numbers. (i) 459 (ii) 36.
Solution. (i) By using 10n – N; We have N = 459 so n = 3
So, 10n – N = 103 – 459 = 541
So, 10’s is complement of 459 = 541
(ii) By adding 1 to 9’s complement

9’s complement of 36 = 99 – 36
= 63

Hence, 10’s complement of 36 = 63 + 1
= 64

1.7.6 r’s Complement and (r – 1)’s Complement
The r’s and (r – 1)’s complements are generalized representation of the complements, we

have studied in previous subsections. r stands for radix or base of the number system, thus
r’s complement is referred as radix complement and (r – 1)’s complement is referred as
diminished radix complement. Examples of r’s complements are 2’s complement and 10’s
complement. Examples of (r – 1)’s complement are 1’s complement and 9’s complement.

24 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

In a base-r system, the r’s and (r – 1)’s complement of the number N having n digits,
can be defined as:

(r – 1)’s complement of N = (rn – 1) – N

and r’s complement of N = rn – N

= (r – 1)’s complement of N + 1

The (r – 1)’s complement can also be obtained by subtracting each digit of N from
r–1. Using the above methodology we can also define the 7’s and 8’s complement for octal
system and 15’s and 16’s complement for hexadecimal system.

1.7.7 Rules for Subtraction using (r–1)’s Complement
Let M (minuend) and S (subtrahend) be the two numbers to be used to evaluate the

difference D = M – S by (r – 1)’s complement and either or both the numbers may be signed
or unsigned.

Until and unless specified the given rules are equally applied for both signed and un-
signed arithmetic. For the clarity of process, let us assume that two data sets are:

Unsigned data— Mu = 1025, Su = 50 and Du = Mu – Su

Signed data— Ms = –370, Ss = 4312 and Ds = Ms – Ss

Step 1. Equate the Length
Find out the length of both the numbers (no. of digit) and see if both are equal. If not,

then make the both the numbers equal by placing leading zeroes.

Mu = 1025, Su = 50 → Su = 0050

Ms = –370, Ss = 4312 → Ms = –0370

Step 2. Represent Negative Operands (for Negative Numbers only)
If either or both of operands are negative then take the (r – 1)’s complement of the

number as obtained in step 1.

Ms = –370 (r – 1)’s of Ms = 9999 – 0370 = 9629

Ss = 4312

Step 3. Complement the Subtrahend
In order to evaluate difference take the (r – 1)’s complement of the representation

obtained for the subtrahend Su in step 1 and Ss in step 2.

Su = 0050, (r – 1)’s of Su = 9999 – 0050 = 9949 and Mu = 1025

Ss = 4312, (r – 1)’s of Ss = 9999 – 4312 = 5687 and Ms = 9629

Step 4. Addition and the Carry (CY)
Add the two numbers in the step 3 and check whether or not carry generated from MSB

due to addition.

Mu = 1025, Su = 9949 → Du = Mu – Su = 10974
↓
CY

NUMBER SYSTEMS AND CODES 25

Ms = 9629, Ss = 5687 → Ds = Ms – Ss = 15316
↓
CY

Step 5. Process the Carry (CY)
In step 4, we obtained result as CY, D. The CY from MSB contains some useful

information especially in some unsigned arithmetic. Processing of carry for (r – 1)’s comple-
ment is

• In this case if a carry is generated from MSB in step 4, add this carry to the LSB
of the result. In step 4, we got CY = 1, Du = 0974 also CY = 1, Ds = 5316. After
adding carry to the LSB (generated in step 4) we get, Du = 0974 + 1 → 0975 and
Ds = 5316 + 1 → 5317. The carry in this case is called “end-around carry”.

Step 6. Result Manipulation
The way result is manipulated is different for signed and unsigned arithmetic.

(a) UNSIGNED

1. If a carry is generated in step 4 then the result is positive(+) and the digits in the
result shows the correct magnitude of result.

2. If there is no carry from MSB in step 4 then the result is negative (–) and the digits
in result is not showing the correct magnitude. So, we must go for a post processing
of result (Step 7) of result to determine the correct magnitude of the result.

(b) SIGNED

1. If the MSB of result obtained in step 5 is lesser than the half radix (i.e., MSB <
r/2) then the result is +ve and representing the correct magnitude. Thus, no post
processing is required.

2. If the MSB of result obtained in step 5 is not lesser than the half radix (i.e., MSB
> r/2) = then the result is –ve and correct magnitude of which must be obtained
by post processing (Step 7).

Step 7. Post Processing and Result Declaration
By the step 6(a) – 1 and the step 6(b) – 1 we know that if the result is positive (+ve) it

represents the correct magnitude whether it is signed or unsigned arithmetic. However, the
negative results are not showing correct magnitudes so post processing in principle is needed
for declaration of negative results.

(a) Declare positive results. As per the rules the result of the unsigned arithmetic is
positive. Therefore,

Du = +0975

(b) Process and declare negative results. As per the rules result of signed arithmetic
is negative and is in complemented form. Take the (r – 1)’s complement to find the
complement and declare the result.

(r – 1)’s of Ds = 9999 – 5317 = –4682

Therefore, Ds = –4682

26 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

1.7.8 Rules for Subtraction using r’s Complement
For better understanding and clarity, let us assume the same data sets for (r – 1)’s

complement method:

Unsigned data— Mu = 1025, Su = 50 and Du = Mu – Su

Signed data— Ms = –370, Ss = 4312 and Ds = Ms – Ss

Step 1. Equate the Length
Same as for (r – 1)’s complement i.e.

Mu = 1025, Su = 50 → Su = 0050

Ms = –370, Ss = 4312 → Ms = –0370

Step 2. Represent Negative Operands
Take the r’s complement of negative operands

Ms = –370, r’s of Ms = 9999 – 370 + 1 = 9630

Ss = 4312

Step 3. Complement the Subtrahend
Take the r’s complement of the representation obtained for the subtrahend Su in step

1 and Ss in step 2 to evaluate the difference

Su = 0050, r’s of Su = 10000 – 0050 = 9950 and Mu = 1025

Ss = 4312, r’s of Ss = 10000 – 4312 = 5688 and Ms = 9630

Step 4. Addition and Carry (CY)
Add the two numbers in the step 3 and check whether or not carry generated from MSB

due to addition. (Same as (r – 1)’s complement).

Mu = 1025, Su = 9950 → Du= 10975
↓
CY

Ms = 9630, Ss = 5688 → Ds = 15318
↓
CY

Step 5. Process the Carry (CY)
If there is carry from MSB in step 4 then simply discard it. In step 4, we got CY = 1,

Du = 0975 also CY = 1, Ds = 5318. After discarding the carry we get, Du = 0975 and Ds = 5318.

Step 6. Result Manipulation
The way result is manipulated is different for signed and unsigned arithmetic.

(a) UNSIGNED

1. If a carry is generated in step 4 then the result is positive(+) and the digits in the
result shows the correct magnitude of result.

NUMBER SYSTEMS AND CODES 27

2. If there is no carry from MSB in step 4 then the result is negative (–) and the digits
in result is not showing the correct magnitude. So, we must go for a post processing
of result (Step 7) of result to determine the correct magnitude of the result.

(b) SIGNED

1. If the MSB of result obtained in step 5 is lesser than the half radix (i.e., MSB <
r/2) then the result is +ve and representing the correct magnitude. Thus no post
processing is required.

2. If the MSB of result obtained in step 5 is not lesser than the half radix (i.e., MSB
> r/2) = then the result is –ve and correct magnitude of which must be obtained
by post processing (Step 7).

Step 7. Post Processing and Result Declaration
(a) Declare positive results. As per the rules, the positive result shows the correct

magnitude. Since, the result of the unsigned arithmetic is positive. Therefore,

Du = +0975

(b) Process and declare negative results. As per the rule, the result obtained of signed
arithmetic is negative and is in complemented form. Take the r’s complement to
find the complement and declare the result.

r’s of Ds = 10000 – 5318 = –4682

Therefore, Ds = –4682

1.8 BINARY CODED DECIMAL (BCD) AND ITS ARITHMETIC
The BCD is a group of four binary bits that represent a decimal digit. In this repre-

sentation each digit of a decimal number is replaced by a 4-bit binary number (i.e., a
nibble). Since a decimal digit is a number from 0 to 9, a nibble representing a number
greater than 9 is invalid BCD. For example (1010)2 is invalid BCD as it represents a
number greater than 9. The table shown in Fig. 1.13 lists the binary and BCD represen-
tation of decimal numbers 0 to 15. Carefully observe the difference between binary and
BCD representation.

Decimal Binary Representation BCD Representation
Number

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 0

3 0 0 1 1 0 0 1 1

4 0 1 0 0 0 1 0 0

5 0 1 0 1 0 1 0 1

6 0 1 1 0 0 1 1 0

7 0 1 1 1 0 1 1 1

8 1 0 0 0 1 0 0 0

9 1 0 0 1 1 0 0 1

28 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

10 1 0 1 0 0 0 0 1 0 0 0 0

11 1 0 1 1 0 0 0 1 0 0 0 1

12 1 1 0 0 0 0 0 1 0 0 1 0

13 1 1 0 1 0 0 0 1 0 0 1 1

14 1 1 1 0 0 0 0 1 0 1 0 0

15 1 1 1 1 0 0 0 1 0 1 0 1

Fig. 1.13 Binary and BCD representation of decimal numbers

BCD Addition: In many application it is required to add two BCD numbers. But the
adder circuits used are simple binary adders, which does not take care of peculiarity of BCD
representation. Thus one must verify the result for valid BCD by using following rules:

1. If Nibble (i.e., group of 4-bits) is less than or equal to 9, it is a valid BCD number.

2. If Nibble is greater than 9, it is invalid. Add 6 (0110) to the nibble, to make it valid.

Or

If a carry was generated from the nibble during the addition, it is invalid. Add 6
(0110) to the nibble, to make it valid.

3. If a carry is generated when 6 is added, add this carry to next nibble.

Example 1. Add the following BCD numbers. (i) 1000 and 0101 (ii) 00011001 and 00011000
Solution. (i)

Since, (1101)2 > (9)10 add 6 (0110) to it

So,

So, result = 00010011

(ii)

Since, a carry is generated from right most nibble we must add 6 (0110) to it.

So,

So, result = 00110111

BCD Subtraction. The best way to cary out the BCD subtraction is to use comple-
ments. The 9’s and 10’s complement, studied in subsection 1.7.5, are exclusively used for this

NUMBER SYSTEMS AND CODES 29

purpose. Although any of the two complements can be used, we prefer 10’s complement for
subtraction. Following are the steps to be followed for BCD subtraction using 10’s comple-
ment:

1. Add the 10’s complement of subtrahend to minuend.

2. Apply the rules of BCD addition to verify that result of addition is valid BCD.

3. Apply the rules of 10’s complement on the result obtained in step 2, to declare the
final result i.e., to declare the result of subtraction.

Example 2. Subtract 61 from 68 using BCD.

Solution. To illustrate the process first we perform the subtraction using 10’s comple-
ment in decimal system. After that we go for BCD subtraction.

we have, D = 68 – 61

So, 10’s complement of 61 = 99 – 61 + 1 = 39

So, 6 8

+ 3 9

1 0 7
↑
Carry

In 10’s complement if an end carry is produced then it is discarded and result is declared
positive. So,

D = +07

by using BCD

1.

2. Check for valid BCD– since a carry is generated from right most nibble, we must add
6 (0110) to it. Since the left most nibble is greater than 9, we must add 6(0110) to it.

Thus,

3. Declaration of result – We got end carry is step 2. In 10’s complement arithmetic, end
carry is discarded and result is declared positive. Hence,

D = (00000111)2 = (7)10

1.9 CODES
Coding and encoding is the process of assigning a group of binary digits, commonly

referred to as ‘bits’, to represent, identify, or relate to a multivalued items of information. By
assigning each item of information a unique combination of bits (1’s and o’s), we transform

30 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

some given information into another form. In short, a code is a symbolic representation of
an information transform. The bit combination are referred to as ‘CODEWORDS’.

There are many different coding schemes, each having some particular advantages and
characteristics. One of the main efforts in coding is to standardize a set of universal codes
that can be used by all.

In a broad sense we can classify the codes into five groups:
(i) Weighted Binary codes

(ii) Non-weighted codes
(iii) Error–detecting codes
(iv) Error–correcting codes
(v) Alphanumeric codes.

1.9.1 Weighted Binary Codes

In weighted binary codes, each position of a number represents a specific weight. The
bits are multiplied by the weights indicated; and the sum of these weighted bits gives the
equivalent decimal digit. We have been familiar with the binary number system, so we shall
start with straight binary codes.

(a) Straight Binary coding is a method of representing a decimal number by its binary
equivalent. A straight binary code representing decimal 0 through 7 is given in Table 2.

Table 2

Decimal Three bit straight Weights MOI Sum
Binary Code 22 21 20

0 000 0 0 0 0

1 001 0 0 1 1

2 010 0 2 0 2

3 011 0 2 1 3

4 100 4 0 0 4

5 101 4 0 1 5

6 110 4 2 0 6

7 111 4 2 1 7

In this particular example, we have used three bits to represent 8 distinct elements of
information i.e., 0 through 7 in decimal form.

Now the question arises, if n elements of information are to be coded with binary (two
valued bits), then how many bits are required to assign each element of information a unique
code word (bit combination). Unique is important, otherwise the code would be ambiguous.

The best approach is to evaluate how many code words can be derived from a combina-
tion of n bits.

For example: Let n = no. of bits in the codeword and x = no. of unique words

Now, if n = 1, then x = 2 (0, 1)

n = 2, then x = 4 (00, 01, 10, 11)

NUMBER SYSTEMS AND CODES 31

n = 3, then x = 8 (000, 001, ..., 111)

and in general, n = j, then x = 2 j

that is, if we have available j no. of bits in the code word, we can uniquely encode max 2 j

distinct elements of information.

Inversely, if we are given x elements of information to code into binary coded format,
the following condition must hold:

x < 2 j

or j > log2 x

or j > 3.32 log10 x

where j = number of bits in code word.

Example 1. How many bits would be required to code the 26 alphabetic characters plus
the 10 decimal digits.

Solution. Here we have total 36 discrete elements of information.

i.e., x = 36

Now j > log2 x

therefore, j > log2 36 or j > 3.32 log10 36

or j > 5.16 bits

Since bits are not defined in fractional parts, we know j > 6.

In other words, a minimum of 6 bit code is required that leaves 28 unused code words
out of the 64 which are possible (26 = 64 and 64 – 36 = 28).

This system of straight binary coding has the disadvantage that the large numbers
require a great deal of hardware to handle with. For example if we have to convert decimal
2869594 to straight binary code a regrous division of this number by 2 is required untill we
get remainder 0 or 1.

The above difficulty is overcomed by using another coding scheme called as BCD codes.

(b) Binary Codes Decimal Codes (BCD codes). In BCD codes, individual decimal
digits are coded in binary notation and are operated upon singly. Thus binary codes represent-
ing 0 to 9 decimal digits are allowed. Therefore, all BCD codes have at least four bits (∵ min.
no. of bits required to encode to decimal digits = 4)

For example, decimal 364 in BCD

3 → 0011

6 → 0110

4 → 0100

364 → 0011 0110 0100

However, we should realize that with 4 bits, total 16 combinations are possible (0000,
0001, ..., 11 11) but only 10 are used (0 to 9). The remaining 6 combinations are unvalid and
commonly referred to as ‘UNUSED CODES’.

32 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

There are many binary coded decimal codes (BCD) all of which are used to represent
decimal digits. Therefore, all BCD codes have atleast 4 bits and at least 6 unassigned or
unused code words shown in Table 3.

Some example of BCD codes are:

(a) 8421 BCD code, sometimes referred to as the Natural Binary Coded Decimal Code
(NBCD);

(b)* Excess-3 code (XS3);

(c)** 84 –2 –1 code (+8, +4, –2, –1);

(d) 2 4 2 1 code

Example 2. Lowest [643]10 into XS3 code

Decimal 6 4 3

Add 3 to each 3 3 3

Sum 9 7 6

Converting the sum into BCD code we have

9 7 6

↓ ↓ ↓
1001 0111 0110

Hence, XS3 for [643]10 = 1001 0111 0110

Table 3. BCD codes

Decimal 8421 Excess-3 84–2–1 2421
Digit (NBCD) code (XS3) code code

0 0000 0011 0000 0000

1 0001 0100 0111 0001

2 0010 0101 0110 0010

3 0011 0110 0101 0011

4 0100 0111 0100 0100

5 0101 1000 1011 1011

6 0110 1001 1010 1100

7 0111 1010 1001 1101

8 1000 1011 1000 1110

9 1001 1100 1111 1111

* XS3 is an example of nonweighted code but is a type of BCD code. It is obtained by adding 3 to a
decimal number. For example to encode the decimal number 7 into an excess 3 code. We must first add
3 to obtain 10. The 10 is then encoded in its equivalent 4 bit binary code 1010. Thus as the name
indicates, the XS3 represents a decimal number in binary form, as a number greater than 3.

** Dashes (–) are minus signs.

NUMBER SYSTEMS AND CODES 33

There are many BCD codes that one can develop by assigning each column or bit position
in the code, some weighting factor in such a manner that all of the decimal digits can be coded
by simply adding the assigned weights of the 1 bits in the code word.

For example: 7 is coded 0111 in NBCD, which is interpreted as

0 × 8 + 1 × 4 + 1 × 2 + 1 × 1 = 7

The NBCD code is most widely used code for the representation of decimal quantities in
a binary coded formet.

For example: (26.98) would be represented in NBCD as

2 6 9 8

(26.98)10 = (0010 0110. 1001 1000) NBCD

It should be noted that on the per digit basis the NBCD code is the binary numeral
equivalent of the decimal digit it represents.

Self complementing BCD codes
The excess 3, 8 4–2–1 and 2421 BCD codes are also known as self complementing

codes.

Self complementing property– 9’s complement of the decimal number is easily obtained
by changing 1’0 to 0’s and 0’s to 1’s in corresponding codeword or the 9’s complement of self
complementing code word is the same as its logical complement.

When arithmetic is to be performed, often an arithmetic “complement” of the numbers
will be used in the computations. So these codes have a particular advantage in machines that
use decimal arithmetic.

Example 3. The decimal digit 3 in 8.4–2–1 code is coded as 0101. The 9’s complement
of 3 is 6. The decimal digit 6 is coded as 1010 that is 1’s complement of the code for 3. This
is termed as self complementing property.

1.9.2 Non-Weighted Codes
These codes are not positionally weighted. This means that each position within a binary

number is not assigned a fixed value. Excess-3 codes and Gray codes are examples of non-
weighted codes.

We have already discussed XS3 code.

Gray code (Unit Distance code or Reflective code)
There are applications in which it is desirable to represent numerical as well as other

information with a code that changes in only one bit position from one code word to the next
adjacent word. This class of code is called a unit distance code (UDC). These are sometimes
also called as ‘cyclic’, ‘reflective’ or ‘gray’ code. These codes finds great applications in Boolean
function minimization using Karnaugh map.

The gray code shown in Table 4 is both reflective and unit distance.

34 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Table 4. Gray codes*

Decimal Three bit Four bit
Digit Gray code Gray code

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1

2 0 1 1 0 0 1 1

3 0 1 0 0 0 1 0

4 1 1 0 0 1 1 0

5 1 1 1 0 1 1 1

6 1 0 1 0 1 0 1

7 1 0 0 0 1 0 0

8 – 1 1 0 0

9 – 1 1 0 1

10 – 1 1 1 1

11 – 1 1 1 0

12 – 1 0 1 0

13 – 1 0 1 1

14 – 1 0 0 1

15 – 1 0 0 0

Binary to Gray Conversion
(1) Place a leading zero before the most significant bit (MSB) in the binary number.

(2) Exclusive-OR (EXOR) adjacent bits together starting from the left of this number
will result in the Gray code equivalent of the binary number.

Exclusive–OR– If the two bits EX–OR’d are identical, the result is 0; if the two bits differ,
the result is 1.

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

*Gray codes are formed by reflection. The technique is as follows:

In binary we have two digits 0 and 1.

Step I. Write 0 and 1 and put a mirror, we first see 1 and
then 0. Place 0’s above mirror and 1’s below mirror

We have got gray code for decimal digits 0 through 4.

Step II. Write these 4 codes and again put a mirror. The code
will look in the order 10, 11, 01 and 00. Then place 0’s above
mirror and 1’s below mirror.

Proceeding intactively in the same manner. We can form Gray
code for any decimal digit.

NUMBER SYSTEMS AND CODES 35

Example. Convert binary 1010010 to Gray code word.

.

Gray to Binary Conversion
Scan the gray code word from left to right. The first 1 encountered is copied exactly as

it stands. From then on, 1’s will be written untill the next 1 is encountered, in which case
a 0 is written. Then 0’s are written untill the next 1 is encountered, in which case a 1 is
written, and so on.

Example 1. Convert Gray code word 1111011 into binary.

1 1 1 1 0 1 1

↓ ↓ ↓ ↓ ↓ ↓ ↓ ⇒ (1111011)Gray = (1010010)2.

1 0 1 0 0 1 0

Example 2. Convert Gray code word 10001011 into binary.

1 0 0 0 1 0 1 1

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 1 1 1 0 0 1 0

⇒ (10001011)Gray = (11110010)2.

1.9.3 Error Detecting Codes
Binary information is transmitted from one device to another by electric wires or other

communication medium. A system that can not guarantee that the data received by one
device are identical to the data transmitted by another device is essentially useless. Yet
anytime data are transmitted from source to destination, they can become corrupted in
passage. Many factors, including external noise, may change some of the bits from 0 to 1 or
viceversa. Reliable systems must have a mechanism for detecting and correcting such errors.

Binary information or data is transmitted in the form of electromagnetic signal over a
channel whenever an electromagnetic signal flows from one point to another, it is subject to
unpredictable interference from heat, magnetism, and other forms of electricity. This inter-
ference can change the shape or timing of signal. If the signal is carrying encoded binary data,
such changes can alter the meaning of data.

In a single bit error, a 0 is changed to a 1 or a 1 is changed to a 0.

In a burst error, multiple (two or more) bits are changed.

The purpose of error detection code is to detect such bit reversal errors. Error detection
uses the concept of redundancy which means adding extra bits for detecting errors at the
destination.

Four types of redundancy checks are used: Parity check (vertial redundancy check)
(VRC), longitudinal redundancy check (LRC), cyclic redundancy check (CRC), and checksum.

For a single bit error detection, the most common way to achieve error detection is by
means of a parity bit.

A parity bit is an extra bit (redundant bit) included with a message to make the total
number of 1’s transmitted either odd or even.

36 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Table 5 shows a message of three bits and its corresponding odd and even parity bits.

If an odd parity is adopted, P bit is choosen such that the total no. of 1’s is odd in four
bit that constitute message bits and P.

If an even parity is adopted, the P bit is choosen such that the total number of 1’s is even.

Table 5. Parity bit generation

Message Odd Even Parity
x y z Parity (P) bit bit (P)

0 0 0 1 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

The message with the parity bit (either odd or even) is transmitted to its destination. The
parity of the received data is checked at the receiving end. If the parity of the received data is
changed (from that of transmitted parity), it means that at least one bit has changed their value
during transmission. Though the parity code is meant for single error detection, it can detect any
odd number of errors. However, in both the cases the original codeword can not be found.

If there is even combination of errors (means some bits are changed but parity remains
same) it remains undetected.

Longitudinal Redundancy Check (LRC)
In LRC, a block of bits is organised in rows and columns (table). For example, a block

of 16 bits can be organised in two rows and eight columns as shown in Fig. 1.14. We then
calcualte the parity bit (even parity/odd parity, here we are using even parity) for each column
and create a new row of 8 bits, which are the parity bits for the whole block.

11011101 00111001

11011101

00111001

LRC 11100100

111001000011100111011101

Original data

Original data with LRC

Fig. 1.14

Cyclic Redundancy Check
CRC is most powerful of the redundancy checking techniques. Cyclic redundancy check

is based on binary division. A sequence of redundant bits called CRC or CRC remainder is
appended to the end of a data unit. After adding CRC remainder, the resulting data unit

NUMBER SYSTEMS AND CODES 37

becomes exactly divisible by another predetermined binary number. At the destination this
data unit is divided by the same binary number. If there is no remainder, then there is no
error. The question is how to obtain correct CRC? CRC is the remainder obtained by dividing
the data unit by a predtermined divisor if it has exactly one bit less than divisor and by
appending the CRC to the data string make it completely divisible by the divisior.

The CRC generator and CRC checker are shown in Fig. 1.15(a) and Fig. 1.15(b) respectively.

Data 00.............0

Divisor (n + 1) bits

Using modulo-2 division

CRC
(n bits)

Remainder

Data CRC
Code word

n bits

Fig. 1.15(a) CRC generator

Data

Divisor

Using modulo-2 division

Remainder

CRC

0 shows no errors

Code word

Fig. 1.15(b) CRC checker

Example 1. For the divisor 10101, check whether there are errors in the received code-
word 1100 1001 01011.

Solution. As shown in Fig. 1.15(b).

Code word: 1100 1001 01011.

Divisor : 10101

Using modulo-2 division, we obtain

Divisor 10101��

111110001
1100100101011
10101
11000
10101
11010
10101

11111
10101

10100
10101
00011011

10101
1110 Remainder

Received code word
Modulo-2 sum

Since, remainder is non-zero shows that there is errors in the received code word.

38 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Example 2. Generate the CRC code for the data word of 1100 10101. The divisor is 10101.

Solution. As shown in Fig. 1.15(a).

Data word: 1100 10101.

Divisor : 10101

The no. of data bits (k) = 9

The no. of bits in divisor (n + 1) = 5

Therefore, no. of zeroes to be appended at the end of data word will be n = 4

Hence, dividend = 1100101010000

(data word + number of zeroes)

Carry out the modulo-2 division

10101
111110111
1100101010000
10101
11000
10101
11011
10101

11100
10101

10011
10101
01100
00000
11000

CRC

10101
11010
10101

1011

11110
10101

Therefore, the CRC will be 1011.

Hence, code word = Data + CRC

= 1100101011011

Checksums
The checksum method is used to detect double errors in bits. Since, the double error will

not change the parity of the bits, the parity checker will not indicate any error.

In the checksums method, initially a word A (let 11001010) is transmitted, next word B
(let 00101101) is transmitted. The sum of these two words is retained in the transmitter. Then
a word C is transmitted and added to the previous sum; and the new sum is retained.
Similarly, each word is added to the previous sum; after transmission of all the words, the
final sum called the checksum is also transmitted. The same operation is done at the receiv-
ing end and the final sum obtained here is checked against the transmitted checksum. If the
two sums are equal there is no error.

Burst Error Detection
So far we have considered detecting or correcting errors that occur independently or

randomly in digit positions. But disturbances can wipe out an entire block of digits. For

NUMBER SYSTEMS AND CODES 39

example, a stroke of lightenning or a human made electrical disturbance can affect several
transmitted digits. Burst errors are those errors that wipe out some or all of a sequential set
of digits.

A burst of length b is defined as a sequence of digits in which the first digit and bth digit
are in error, with the b-2 digits in between either in error or received correctly.

It can be shown that for detecting all burst errors of length b or less; b parity check bits
are necessary and sufficient.

To construct such a code, lets group k data digits into segment of b digits in length as
shown Fig. 1.16:

���� ���� ���� ���� ����

�	��)���

1����-	����+	����+	����	����

Fig. 1.16 Burst error detection

To this we add a last segment of b parity check digits, which are determined as follows:

“The modulo-2 sum* of the ith digit in each segment (including the parity check segment)
must be zero.”

It is easy to see that if a single sequence of length b or less is in error, parity will be
violated and the error will be detected and the reciever can request retransmission of code.

1.9.4 Error Correcting Codes
The mechanism that we have covered upto this point detect errors but do not correct

them. Error correction can be handled in two ways. In one, when an error is encountered
the receiver can request the sender to retransmit entire data unit. In the other, a receiver
can use an error correcting code, which automatically corrects certain errors.

In theory, it is possible to correct any binary code errors automatically using error
correcting codes, however they require more reductant bits than error detecting codes.
The number of bits required to correct a multiple-bit or burst error is so high that in most
cases, it is inefficient to do so. For this reason, most error correction is limited to one,
two, or three-bit errors. However, we shall confine our discussion to only single bit error
correction.

As we saw earlier, single bit errors can be detected by the addition of a redundant (parity)
bit to the data (information) unit. This provides sufficient base to introduce a very popular
error detection as well correction codes, known as Block codes.

Block codes: [(n, k) codes] In block codes, each block of k message bits is encoded into
a larger block of n bits (n > k), as shown in Fig. 1.17. These are also known as (n, k) codes.

* Modulo–2 sum denoted by symbol ⊕ with the rules of addition as follows:

� � �

� � �

� � �

� � �

⊕ =
⊕ =
⊕ =
⊕ =

R
S
||

T
||

U
V
||

W
||

40 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The reductant* (parity) bits ‘r’ are derived from message bits ‘k’ and are added to them.
The ‘n’ bit block of encoder output is called a codeword.

Message
block

Message

k bits

ENCODER

Code
block

Message Redundant bits

k bits r bits

Code n bits = (k + r) bits

Fig. 1.17

The simplest possible block code is when the number of reductant or parity bits is one.
This is known as parity check code. It is very clear that what we have studied in single bit
error detection is nothing but a class of ‘Block codes’.

R.W. Hamming developed a system that provides a methodical way to add one or more
parity bit to data unit to detect and correct errors weight of a code.

Hamming distance and minimum distance
The weight of a code word is defined as the number of nonzero components in it. For example,

Code word Weight

010110 3

101000 2

000000 0

The ‘Hamming distance’ between two code words is defined as the number of components
in which they differ.

For example, Let U = 1010
V = 0111

W = 1001
Then, D (U, V) = distance between U and V = 3
Similarly, D (V, W) = 3
and D (U, W) = 2
The ‘minimum distance’ (Dmin) of a block code is defined is the smallest distance between

any pair of codewords in the code.
From Hamming’s analysis of code distances, the following important properties have

been derived. If Dmin is the minimum distance of a block code then
(i) ‘t’ number of errors can be detected if

Dmin = t + 1
(ii) ‘t’ number of errors can be corrected if

Dmin = 2t + 1
It means, we need a minimum distance (Dmin) of at least 3 to correct single error and

with this minimum distance we can detect upto 2 errors.

*The ‘r’ bit are not necessarily appear after ‘k’ bits. They may appear at the starting, end or in between
‘k’ data bits.

NUMBER SYSTEMS AND CODES 41

Now coming to our main objective i.e., error correction, we can say that an error occurs
when the receiver reads 1 bit as a 0 or a 0 bit as a 1. To correct the error, the reciever simply
reverses the value of the altered bit. To do so, however, it must know which bit is in error.
The secret of error correction, therefore, is to locate the invalid bit or bits.

For example, to correct a single bit error in a seven bit data unit, the error correction code
must determine, which of the seven data bits has changed. In the case we have to distinguish
between eight different states: no error, error in position 1, error in position 2, and so on, upto
error in position 7. To do so requires enough redudant bits to show all eight states.

At first glance, it appears that a 3-bit redundant code should be adequate because three
bits can show eight different states (000 to 111) and can thus indicate the locations of eight
different possibilities. But what if an error occurs in the redundant bits themselves. Seven
bits of data plus three bits of redundancy equals 10 bits. Three bits, however, can identify only
eight possibilities. Additional bits are necessary to cover all possible error locations.

Redundant Bits
To calculate the number of redundant bits (r) required to correct a given no. of data bits

(k), we must find a relationship between k and r. Fig. 1.18 shows k bits of data with r bits
of redundancy added to them. The length of the resulting code is thus n = k + r.

If the total no. of bits in code is k + r, then r must be able to indicate at least k + r + 1
different states. Of these, one state means no error and k + r states indicate the location of
an error in each of the k + r positions.

Data () bitsk Redundant
() bitsr

Total + = bitsk r n

Fig. 1.18

Alternatively, we can say the k + r + 1 status must be discoverable by r bits; and r bits
can indicate 2r different states. Therefore, 2r must be equal to or greater than k + r + 1:

2r > k + r + 1
The value of r can be determined by plugging in the value of k (the length of data unit).

For example, if the value of k is 7 (⇒ seven bit data), the smallest r value that can satisfy
this equation is 4:

24 > 7 + 4 + 1
and 23 > 7 + 4 + 1

1.9.5 Hamming Code
So far, we have examined the number of bits required to cover all of the possible single

bit error states in a transmission. But how do we manipulate those bits to discover which state
has occured ? A technique developed by R.W. Hamming provides a practical solution, Hamming
code is a class of block code (n, k) and we are going to discuss (11, 7) Hamming code.

Positioning the Redundant Bits
The ‘Hamming code’ can be applied to data units of any length and uses the relationship

between data and redundant bits as discussed above. As we have seen, a 7 bit data unit
(k = 7) requires 4 redundant bits (r = 4) that can be added to the end of data unit (or
interspersed with data bits). Such that a code word of length 11 bits (n = 11) is formed.

42 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

In Fig. 1.19 these bits are placed in positions 1, 2, 4 and 8 (the positions in an 11-bit
sequence that are powers of 2). We refer these bits as r1, r2, r4 and r8.

9 8 7 6 5 4 3 2 11011 Bits ()n

d7 d6 d5 r4 d4 d3 d2 r3 d1 r2 r1

Redundant bits
Fig. 1.19

In the Hamming code, each r bit is the redundant bit for one combination* of data bits.
The combinations (modulo-2 additions) used to calculate each of four r values (viz, r1, r2, r4
and r8) for a 7 bit data sequence d1 through d7 are as follows:

r1 : bits 1, 3, 5, 7, 9, 11

r2 : bits 2, 3, 6, 7, 10, 11

r4 : bits 4, 5, 6, 7

r8 : bits 8, 9, 10, 11

Each data bit may be included in more than one redundant bit calculation. In the sequences
above, for example, each of the original data bits is included in at least two sets, while the
r bits are included in only one.

To see the pattern behind this strategy, look at the binary representation of each bit
position. The r1 bit is calculated using all bit positions whose binary representation includes
a 1 in the right most position. The r2 bit is calculated using all bit positions with a 1 in the
second position, and so on. (see Fig. 1.20)

11

d7 d6 d5 r8 d4 d3 d2 r4 d1 r2 r1

9 7 5 3 1
1011 1001 0111 0101 0011 0001

r will take care
of these bits
1

11

d7 d6 d5 r8 d4 d3 d2 r4 d1 r2 r1

10 7 6 3 2
1011 1010 0111 0110 0011 0010

r will take care
of these bits
2

*In codes combination of bits means modulo 2 addition of data bits. Modulo-2 addition applies
in binary field with following rules.

� �⊕ = 0 Modulo 2 → ⊕
� �⊕ = 1

� �⊕ = 1

� �⊕ = 0

NUMBER SYSTEMS AND CODES 43

d7 d6 d5 r8 d4 d3 d2 r4 d1 r2 r1

7 5 4
0111 0101 0100

r will take care
of these bits
4

11

d7 d6 d5 r8 d4 d3 d2 r4 d1 r2 r1

10 9 8
1011 1010 1001 1000

r will take care
of these bits
8

6
0110

Fig. 1.20

Calculating the r values
Fig. 1.21 shows a Hamming code implementation for a 7 bit data unit. In the first step;

we place each bit of original data unit in its appropriate position in the 11-bit unit. For
example, let the data unit be 1001101.

In the subsequent steps; we calculate the EVEN parities for the various bit combina-
tions. The even parity value for each combination is the value of corresponding r bit. For
example, the value of r1 is calculated to provide even parity for a combination of bits 3, 5,
7, 9 and 11.

i.e., 1011 1001 0111 0101 0011 0001
Here the total no. of 1’s are 13. Thus to provide even parity r1 = 1.
Similarly the value of r2 is calculated to provide even parity with bits 3, 6, 7, 10, 11, r4

with bits 5, 6, 7 and r8 with bits 9, 10, 11. The final 11-bit code is sent.

1 0 0 r8 1 1 0 r4 1 r2 r1

9 8 7 6 5 4 3 2 111 10

Data 1001101 →

Data

1 0 0 r8 1 1 0 r4 1 r2 1

9 8 7 6 5 4 3 2 111 10

Adding
r1

1 0 0 r8 1 1 0 r4 1 0 1

9 8 7 6 5 4 3 2 111 10

Adding
r2

1 0 0 r8 1 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

Adding
r4

1 0 0 1 1 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

Adding
r8

Code : 1001 110 0101

r = 1
r = 0
r = 0
r = 1
Thus
r r r r = 1 0 0 1

1

2

4

8

8 4 2 1

Sender’s
parity

 Fig. 1.21

44 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Error detection and correction – Suppose above generated code is received with the
error at bit number 7 ⇒ bit has changed from 1 to 0 see Fig. 1.22.

1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1

Received Sent

Error
Fig. 1.22

The receiver receives the code and recalculate four new4 redundant bits (r1, r2, r4 and
r8) using the same set of bits used by sender plus the relevant parity bit for each set shown
in Fig. 1.23.

1 0 0 1 0 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

1 0 0 1 0 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

1 0 0 1 0 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

1 0 0 1 0 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

0 1 1 1

The bit in position 7 is in Error 7 in decimal←

r8 r4 r2 r1

Fig. 1.23

Then it assembles the new parity values into a binary number in order of r position
(r8, r4, r2, r1). In our example, this step gives us the binary number 0111 (7 in decimal), which
is the precise location of the bit in error.

Once the bit is identified, the reciever can reverse its value and correct the error.

Note: If the new parity assembled is same as the parity at sender’s end mean no error.

1.9.6 Cyclic Codes
Binary cyclic codes form a subclass of linear block codes.
An (n, k) linear block code is called the cyclic code if it satisfies the following property:
If an n tuple (a row vector of n elements), V = (V0, V1, V2, . . ., Vn–1)
is a code vector or V, then the n tuple (Vn–1, V0, V1, . . ., Vn–2)

is obtained by shifting V cyclically one place to the right (it may be left also) is also a code
vector of V.

NUMBER SYSTEMS AND CODES 45

V1 = (Vn–1, V0, V1, . . ., Vn–2). From above definition it is clear that

V(i) = (Vn–i, Vn–i+1, . . ., V0, V1, . . . Vn–i–1).

An example of cyclic code:

� � � �

� � � �

� � � �

� � � �
� � � �

It can be seen that 1101, 1110, 0111, 1011 is obtained by a cyclic shift of n-tuple 1101
(n = 4). The code obtained by rearranging the four words is also a cyclic code. Thus 1110, 0111,
1011 are also cyclic codes.

This property of cyclic code allows to treat the codewords as a polynomial form. A
procedure for generating an (n, k) cyclic code is as follows:

The bits of uncoded word (message), let D = [d0, d1, d2 ... dk–1] are written as the
coefficients of polynomial of degree k – 1.

D(x) = d0 x0⊕ d1x1⊕ d2x2⊕ ...⊕ dk–1 xk–1

Similarly, the coded word, let V = [v0, v1, v2, ..., vn–1] are written as the coefficients of
polynomial of degree n – 1.

V(x) = v0x0⊕ v1x1⊕ v2x2⊕ . . .⊕ vn–1 xn–1

The coefficients of the polynomials are 0’s and 1’s and they belong to the binary field with
the modulo-2 rules for addition as described in Hamming codes.

Now, we will state a theorem* which is used for cyclic code generation.
Theorem. If g(x) is a polynomial of degree (n–k) and is a factor of xn+1, then g(x)

generates an (n, k) cyclic code in which the code polynomial V(x) for a data polynomial D(x)
is given by

V(x) = D(x). g(x)
where V(x) – Code word polynomial of degree (n – 1)

D(x) – Data word polynomial of degree (k – 1)
g(x) – Generator polynomial of degree (n – k)

Example. Consider a (7, 4) cyclic code. The generator polynomial for this code is given
as g(x) = 1 + x + x3. Find all the code words of this code.

Solution. It is a (7, 4) cyclic code
n = No. of bits in coded word = 7

and k = No. of bits in data word = 4.
(n – k) = No. of redundant bits in code word = 3

It implies that, there are 16 different messages that are possible (0000, 0001, 0010
. . . 1110, 1111). Correspondingly, there will be 16 different codes (of 7 bits).

Now, according to above theorem, the generator polynomial g(x) must be a factor of
(xn + 1)** and of degree (n – k).

xn + 1 = x7 + 1
If we factorize this polynomial we get

x7+1 = (x + 1) (x3 + x + 1) (x3 + x2 + 1)
 I II III

*Without giving proof that is beyond the scope of this book.
**+ means modulo-2 operation ⊕ in binary codes.

46 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

I Factor → x + 1
II Factor → x3 + x + 1

III Factor → x3 + x2 + 1

The I factor does not satisfy the requirement that it must be of degree (n – k) but the
II and III do satisfy.

Therefore, we can either choose II Factor or III Factor as generator polynomial g(x).
However, the set of codewords will naturally be different for these two polynomial.

In this example, we have taken g(x) as 1 + x + x3.
i.e., we have to encode the 16 messages using generator polynomial.

g(x) = 1 + x + x3.
Consider, for example, a data word 1010.

D = (d0, d1, d2, d3) = (1010)
Because the length is four, the data polynomial D(x)
will be of the form d0 + d1x + d2x2 + d3x3

D(x) = 1 + 0.x + 1.x2 + 0.x3 = 1 + x2

The code polynomial V(x) = D(x) . g(x)
= (1 + x2) . (1 + x + x3)

= 1 + x + x2 +
� �� �	,	

�
 + x5

i.e., V(x) = 1 + x + x2 + x5

Because if x = 1 then x3 = 1
or if x = 0 then x3 = 0

0 ⊕ 0 = 1 ⊕ 1 = 0
Because the length of codeword and (n) is 7.
So the standard polynomial will be of the form.

V(x) = V0 + V1x + V2x2 + V3x3 + V4x4 +V5x5 + V6x6

Comparing this standard polynomial with above poly. for V(x)
we get V = [1110010]
In a similar way, all code vectors can be found out.

1.9.7 Alphanumeric Codes
For the inherently binary world of the computer, it is necessary to put all symbols, letters,

numbers, etc. into binary form. The most commonly used alphanumeric code is the ASCII code,
with other like the EBCDIC code being applied in some communication applications.

ASCII Alphanumeric Code
The American Standard Code for Information Interchange (ASCII) is the standard alpha-

numeric code for keyboards and a host of other data interchange tasks. Letters, numbers, and
single keystroke commands are represented by a seven-bit word. Typically, a strobe bit or
start bit is sent first, followed by the code with LSB first. Being a 7-bit code, it has 2^7 or
128 possible code groups.

NUMBER SYSTEMS AND CODES 47

Start bit LS
B

K = 100 1011

M
S

B

LS
B

M
SB Stop

bits Start bit LS
B

j = 110 1011

M
S

B

LS
B

M
SB Stop

bits

ASCII Alphanumeric Code

Char 7 bit ASCII HEX Char 7 bit ASCII HEX Char 7 bit ASCII HEX

A 100 0001 41 a 1100001 61 0 0110000 30
B 100 0010 42 b 1100010 62 1 0110001 31
C 100 0011 43 c 1100011 63 2 0110010 32
D 100 0100 44 d 1100100 64 3 0110011 33
E 100 0101 45 e 1100101 65 4 0110100 34
F 100 0110 46 f 1100110 66 5 0110101 35
G 100 0111 47 g 1100111 67 6 0110110 36
H 100 1000 48 h 1101000 68 7 0110111 37
I 100 1001 49 i 1101001 69 8 01l 1000 38
J 100 1010 4A j 1101010 6A 9 01l 1001 39
K 100 1011 4B k 1101011 6B blank 0100000 20
L 100 1100 4C 1 110 1100 6C . 010 1110 2E
M 100 1101 4D m 110 1101 6D (010 1000 28
N 100 1110 4E n 110 1110 6E + 010 1011 2B
O 100 1111 4F o 110 1111 6F $ 010 0100 24
P 101 0000 50 p 111 0000 70 * 010 1010 2A
Q 101 0001 51 q 111 0001 71) 010 1001 29
R 101 0010 52 r 111 0010 72 - 010 1101 2D
S 101 0011 53 s 111 0011 73 / 010 1111 2F
T 101 0100 54 t 111 0100 74 , 010 1100 2C
U 101 0101 55 u 111 0101 75 = 011 1101 3D
V 101 0110 56 v 111 0110 76 RETURN 000 1101 0D
W 101 0111 57 w 111 0111 77 LNFEED 000 1010 0A
X 101 1000 58 x 111 1000 78 0 011 0000 30
Y 101 1001 59 y 111 1001 79 0 011 0000 30
Z 101 1010 5A z 111 1010 7A 0 011 0000 30

EBCDIC Alphanumeric Code
The extended binary coded decimal interchange code (EBCDIC) is an 8-bit alphanumeric

code which has been extensively used by IBM in its mainframe applications.

48 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

EBCDIC Code

Char EBCDIC HEX Char EBCDIC HEX Char EBCDIC HEX

A 1100 0001 C1 P 1101 0111 D7 4 1111 0100 F4

B 1100 0010 C2 Q 1101 1000 D8 5 1111 0101 F5

C 1100 0011 C3 R 1101 1001 D9 6 1111 0110 F6

D 1100 0100 C4 S 1110 0010 E2 7 1111 0111 F7

E 1100 0101 C5 T 1110 0011 E3 8 1111 1000 F8

F 1100 0110 C6 U 1110 0100 E4 9 1111 10001 F9

G 1100 0111 C7 V 1110 0101 E5 blank

H 1100 1000 C8 W 1110 0110 E6

I 1100 1001 C9 X 1110 0111 E7 (... ...

J 1101 0001 Dl Y 1110 1000 E8 +

K 1101 0010 D2 Z 1110 1001 E9 $

L 1101 0011 D3 0 1111 0000 F0 *

M 1101 0100 D4 1 1111 0001 F1)

N 1101 0101 D5 2 1111 0010 F2 -

O 1101 0110 D6 3 1111 0011 F3 /

1.10 SOLVED EXAMPLES
Example 1. Convert each binary number to the decimal:
(a) (11)2 (b) (.11)2

(1011)2 (.111)2
(10111)2 (.1011)2
(1111)2 (.10101)2
(11010111)2 (.0101)2
(1001)2 (.110)2

(c) (11.11)2
(1011.1011)2
(1111.0101)2
(11010111.110)2
(1001.10101)2

Solution. (a) (11)2 = 1 × 21 + 1 × 20

= 2 + 1 = 3
(1011)2 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20

= 8 + 0 + 2 + 1 = 11
(10111)2 = 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20

= 16 + 0 + 4 + 2 + 1 = 23
(1111)2 = 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20

= 8 + 4 + 2 + 1 = 15

NUMBER SYSTEMS AND CODES 49

(11010111)2 = 1 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 +
1 × 21 + 1 × 20

= 128 + 64 + 0 + 16 + 0 + 4 + 2 + 1 = 215
(1001)2 = 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20

= 8 + 0 + 0 + 1 = 9
(b) (.11)2 = 1 × 2–1 + 1 × 2–2

= .5 + .25 = (.75)10
(.111)2 = 1 × 2–1 + 1 × 2–2 + 1 × 2–3

= .5 + .25 + .125 = (.875)10
(.1011)2 = 1 × 2–1 + 0 × 2–2 + 1 × 2–3 + 1 × 2–4

= .5 + 0 + .125 + .0625 = (.6875)10
(.10101)2 = 1 × 2–1 + 0 × 2–2 + 1 × 2–3 + 0 × 2–4 + 1 × 2–5

= .5 + 0 + .125 + 0 + .03125 = (.65625)10
(.0101)2 = 0 × 2–1 + 1 × 2–2 + 0 × 2–3 + 1 × 2–4

= 0 + .25 + 0 + .0625 = (.3125)10
(.110)2 = 1 × 2–1 + 1 × 2–2 + 0 × 2–3

= .5 + .25 + 0 = (.75)10
(c) 11.11 = ?

From part (a) and part (b), we see that
11 = 3
11 = .75

Therefore, (11.11)2 = (3.75)10
1011.1011 = ?

(1011)2 = 11
(.1011)2 = .6875

Therefore, (1011.1011)2 = (.6875)10
1111.0101 = ?

(1111)2 = 15
(.0101)2 = .3125

Therefore, (1111.0101)2 = (15.3125)10
11010111.110 = ?

11010111 = 215
.110 = .75

(11010111.110)2 = (215.75)10
1001.10101 = ?

1001 = 9
.10101 = .65625

(1001.10101)2 = (9.65625)10

Example 2. How many bits are required to represent the following decimal numbers,
represent them in binary.

50 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(I) (17)10 (II) (27)10 (III) (81)10 (IV) (112)10 (V) (215)10

Solution. (I) Let n bits required

n should be such that

2n > Given Number (N)

Therefore, 2n > 17

i.e., n > 5

Therefore, minimum number of bits required = 5.

(II) (27)10

The minimum number of bits required is given by

2n > N (given number)

2n > 27

i.e., n > 5

(III) (81)10

The minimum number of bits required is given by

2n > N

2n > 81

i.e., n = 7

(IV) (112)10

The minimum number of required is given by

2n > N

2n > 112

i.e., n = 7

(V) (215)10

The minimum number of bits required is given by

2n > 215

i.e., n = 8

NUMBER SYSTEMS AND CODES 51

Example 3. Convert the following numbers as indicated:

(a) decimal 225.225 to binary, octal and hexadecimal.

(b) binary 11010111.110 to decimal, octal and hexadecimal.

(c) octal 623.77 to decimal, binary and hexadecimal.

(d) hexadecimal 2AC5.D to decimal, octal and binary.

Solution. (a) 225.225 = (?)2

(.225)10 = (?)2

.225 × 2 = 0.450

.450 × 2 = 0.900

.900 × 2 = 1.800

.800 × 2 = 1.600

.600 × 2 = 1.200

.200 × 2 = 0.400

.400 × 2 = 0.800

.800 × 2 = 1.600

.600 × 2 = 1.200

Fraction part = 001110011

Therefore,

(225.225)10 = 11100001.001110011

(225.225)10 = (?)8

From the previous step we know the binary equivalent of decimal no. as 11100001.001110011.

For octal number, binary number is partitioned into group of three digit each starting
from right to left and replacing decimal equivalent of each group.

52 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(225.225)10 = (341.163)8
(225.225)10 = (?)16

For hexadecimal number, instead of three four digits are grouped.

(225.225)10 = E1.398

(b) (11010111.110)2 = (?)10

From example 1.6.1

(11010111.110)2 = (215.75)10

(11010111.110)2 = (?)8

= 327

= 6

(11010111.110)2 = (327.6)8
(11010111.110)2 = (?)16

= D7

= C

(11010111.110)2 = (D7.C)16

(c) (623.77)8 = (?)2
623 = 110010011

.77 = 111111

(623.77)8 = (110010011.111111)2
(623.77)8 = (?)16

= 193

= FC

(623.77)8 = (193.FC)16

NUMBER SYSTEMS AND CODES 53

(623.77)8 = (?)10

623 = 6 × 82 + 2 × 81 + 3 × 80

= 384 + 16 + 3

= 403

.77 = 7 × 8–1 + 7 × 8–2

= 7 × .125 + 7 × .015625

= .875 + .109375

= 0.9843

(623.77)8 = (403.9843)10

(d) (2AC5.D)16 = (?)2

2AC5 = 0010101011000101

D = 1101

(2AC5.D)16 = (10101011000101.1101)2
(2AC5.D)16 = (?)8

(2AC5.D)16 = (25305.64)8
(2AC5.D)16 = (?)10

2AC5 = 2 × 163 + 10 × 162 + 12 × 161 + 5 × 160

= 2 × 4096 + 10 × 256 + 12 × 16 + 5 × 1

= 8192 + 2560 + 192 + 5

= 10949

D = 13 × 16–1

= 13 × .0625

= .8125

(2AC5.D)16 = (10949.8125)10

Example 4. Obtain the 9’s and 10’s complement of the following decimal numbers.

(i) 10000, (ii) 00000, (iii) 13469, (iv) 90099, (v) 09900

Solution. 9’s complement

10’s complement = 9’s complement + 1 (LSB)

54 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Example 5. Perform the subtraction with the decimal numbers given using
(1) 10’s complement.
(2) 9’s complement.
Check the answer by straight subtraction
(a) 5249 – 320 (b) 3571 – 2101.

Solution. (a) Using 10’s complement. 10’s complement of 320

Therefore, 5249 – 320 = 5249

+9680

CY →
discarded

Result = 4929
Using 9’s complement. 9’s complement of 320

Therefore, 5249 – 320 = 5249
+ 9679

CY →

Result = 4929
By straight subtraction

Hence, results are same by each method.

(b) Using 10’s complement

10’s complement of 2101 =

Therefore, 3571 – 2101 = 3571

+7899

CY →
discarded

Result = 470

NUMBER SYSTEMS AND CODES 55

Using 9’s complement

9’s complement of 2101 = 7898

Therefore, 3571 – 2101 = 3571

+7898

CY →

By straight subtraction

Hence, results are same by each method.

Example 6. Obtain the 1’s and 2’s complement of the following binary numbers

(I) 11100101 (II) 0111000 (III) 1010101 (IV) 10000 (V) 00000.

Solution.

 (I) 1’s complement = 00011010

2’s complement = 1’s complement + 1 = 00011011

(II) 1’s complement = 1000111

2’s complement = 1000111

1

(III) 1’s complement = 0101010

2’s complement = 0101011

(IV) 1’s complement = 01111

2’s complement = 10000

(V) 1’s complement = 11111

2’s complement = 00000

1.11 EXERCISES
1. Write 9’s and 10’s complement of the following numbers:

+9090

–3578

+136.8

–136.28

2. (a) Convert the decimal integer’s +21 and –21 into 10’s complement and 9’s comple-
ment.

(b) Convert the above two numbers in binary and express them in six bit (total)
signed magnitude and 2’s complement.

56 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

3. (a) Find the decimal equivalent of the following binary numbers assuming signed
magnitude representation of the binary number:

(I) 001000 (II) 1111

(b) Write the procedure for the subtraction of two numbers with (r – 1)’s comple-
ment.

(c) Perform the subtraction with the following binary numbers using

2’s complement and 1’s complement respectively.

(I) 11010 – 1101 (II) 10010 – 10011

(d) Perform the subtraction with following decimal numbers using

10’s complement and 9’s complement respectively.

(I) 5294 – 749 (II) 27 – 289

4. Convert:

(I) (225.225)12 to Hexadecimal number.

(II) (2AC5.15)16 to Octal number.

5. Perform the following using 6’s complement:

(I) (126)7 + (42)7

(II) (126)7 – (42)7

6. Represent the following decimal numbers in two’s complement format:

(I) +5 (II) +25 (III) –5 (IV) –25 (V) –9

7. Represent the decimal numbers of question 6 in ones complement format.

8. Find the decimal equivalent of each of the following numbers assuming them to be
in two’s complement format.

(a) 1000 (b) 0110 (c) 10010 (d) 00110111

9. Convert the following octal numbers into equivalent decimal numbers:

(a) 237 (b) 0.75 (c) 237.75

10. Represent the following decimal numbers in sign-magnitude format:

(a) –11 (b) –7 (c) +12 (d) +25

2.0 INTRODUCTORY CONCEPTS OF DIGITAL DESIGN
George Boole, in his work entitled ‘An Investigation of the Laws of Thought’, on which

are founded the Mathematical Theories of Logic and Probability (1854), introduced the
fundamental concepts of a two-values (binary) system called Boolean Algebra. This work was
later organized and systemized by Claude Shannon in ‘Symbolic Analysis of Relay and
Switching Circuits (1938)’. Digital design since that time has been pretty much standard and
advanced, following Boole’s and Shannon’s fundamentals, with added refinements here and
there as new knowledge has been unearthed and more exotic logic devices have been
developed.

Digital design is the field of study relating the adoptation of Logic concepts to the design
of recognizable, realizable, and reliable degital hardware.

When we begin study of logic, digital logic, binary systems, switching circuits, or any
other field of study that can be classified as being related to digital design, we must
concern ourselves with learning some philosophical premises from which we must launch
our studies. In order to reach a desirable theoretical, as well as conceptual, understanding
of digital design, you must grasp some fundamental definitions and insight giving con-
cepts.

Generally speaking, being involved in digital design is dealing in “LOGIC” a term that
certainly needs some definition. LOGIC, by definition, is a process of classifying information.
Information is intelligence related to ideas, meanings, and actions which can be processed or
transformed into other forms. For example, NEWS is information by virtue of the fact that
it is intelligence related to ACTIONS, be it good news or bad news. News can be heard, read,
seen or even felt or any combination of all four, indicating the possibility of its transformation
into different forms.

“BINARY LOGIC,” or two-valued logic, is a process of classifying information into two
classes. Traditionally, binary arguments, or that information which can be definitely classified
as two valued, has been delivered either TRUE or FALSE. Thus, the Boolean variable is
unlike the algebraic variables of the field of real numbers in that any Boolean variable can
take on only two values, the TRUE or the FALSE. Traditionally, it is standard to use the
shorthand symbols 1 for TRUE and 0 for the FALSE.

57

C
H

A
P

T
E

R 2
DIGITAL DESIGN FUNDAMENTALS—

BOOLEAN ALGEBRA AND LOGIC GATES

58 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

2.1 TRUTH TABLE
A Boolean variable can take on only two values, not an infinite number as, the variable

of the real number system, can. This basic difference allows us to illustrate all possible logic
conditions of a Boolean variable or a collection of Boolean variables using a finite tabuler
format called a ‘truth-table’. Further, the nontrivial decisions in digital design are based on
more than one-two valued variable. Thus, if an output is to be completely specified as a
function of two inputs, there are four input combinations that must be considered. If there
are three inputs, then eight combinations must be considered and from this we see that n
inputs will require 2n combinations to be considered.

A TRUTH-TABLE as suggested is a tabular or graphical technique for listing all possible
combinations of input variables, arguments, or whatever they may be called, in a vertical
order, listing each input combination one row at a time (Table 2.1). For example,

(i) Let we have a TV that operates with a switch. The TV, becomes on or off with the
switch on or off respectively.

Table 2.1(a)

���
�����	
�

���
���

���
��

�

�

���
��

�

�

(ii) Let we have a TV that operates with two switches. When both the switches are
‘ON’ then only TV becomes ‘ON’ and in all other cases TV is ‘Off ’.

Table 2.1(b)

S.1 S.2 TV
0 0 0 OFF
0 1 0 OFF
1 0 0 OFF
1 1 1 ON

(iii) Let the TV operate with three switches. The condition now is that when at least
two switches are ‘ON’ the TV becomes ‘ON’ and in all other conditions ‘TV’ is ‘OFF’.

Table 2.1(c)

S.1 S.2 S.3 TV
0 0 0 0 OFF
0 0 1 0 OFF
0 1 0 0 OFF
0 1 1 1 ON
1 0 0 0 OFF
1 0 1 1 ON
1 1 0 1 ON
1 1 1 0 ON

Table 2.1(a) illustrates the use of a one variable T.T. and how the output or combined
interaction is manually listed to the right of each possible combination. Table 2.1(b) and Table

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 59

2.1(c) show the standard form for two and three variable truth-tables. In review, what is
suggested here is that after all the input variables have been identified, and all the possible
combinations of these variables have been listed in the truth-table on the left, then each row
should be studied to determine what output or combined interaction is desired for that input
combination. Further, note that the input combinations are listed in ascending order, starting
with the binary equivalent of zero. The TRUTH-TABLE also allows us to establish or prove
Boolean identities without detailed mathematical proofs, as will be shown latter.

2.2 AXIOMATIC SYSTEMS AND BOOLEAN ALGEBRA
The AND, OR, and INVERTER functions make up a sufficient set to define a two valued

Boolean Algebra. Now, we introduce some formal treatment to this two-valued Boolean algebra.

Axiomatic Systems
Axiomatic systems are founded on some fundamental statements reffered to as ‘axioms’

and ‘postulates.’ As you delve deeper into the origin of axioms and postualtes, you find these
to be predicted on a set of undefined objects that are accepted on faith.

Axioms or postulates are statements that make up the framework from which new
systems can be developed. They are the basis from which theorems and the proofs of these
theorems are derived. For example, proofs are justified on the basis of a more primitive proof.
Thus, we use the statement—‘From this we justify this’. Again, we find a process that is based
on some point for which there exist no furhter primitive proofs. Hence, we need a starting
point and that starting point is a set of axioms or postulates.

Axioms are formulated by combining intelligence and empirical evidence and should have
some basic properties. These are:

1. They are statements about a set of undefined objects.
2. They must be consistent, that is, they must not be self-contradictory.
3. They should be simple but useful, that is, not lengthy or complex.
4. They should be independent, that is, these statements should not be interdependent.

The study of axiomatic systems related to logic motivated the creation of the set of
postulates known as the ‘HUNTINGTON POSTULATES’. E.V. Huntigton (1904) formulated
this set of postulates that have the basic properties described desirable, consistant, simple and
independent. These postulates as set forth can be used to evaluate proposed systems and
those systems that meet the criteria set forth by these posutlates become known as Huntigton
System. Further, once a proposed system meets the criteria set forth by the Huntington
Postulates, automatically all theorems and properties related to other Huntigton systems
become immediately applicable to the new system.

Thus, we propose a Boolean algebra and test it with the Huntigton postulates to deter-
mine its structure. We do this so that we can utilize the theorems and properities of other
Huntigton system for a new system that is defined over a set of voltge levels and hardware
operators. Boolean algebra, like other axiomatic systems, is based on several operators de-
fined over a set of undefined elements. A SET is any collection of elements having some
common property; and these elements need not be defined. The set of elements we will be
dealing with is {0, 1}. The 0 and 1, as far as we are concerned, are some special symbols. They
are simply some objects we are going to make some statements about. An operation (., +) is
defined as a rule defining the results of an operation on two elements of the set. Becuase these
operators operate on two elements, they are commonly reflected to as “binary operators”.

60 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

2.2.1 Huntington’s Postulates
1. A set of elements S is closed with respect to an operator if for every pair of elements

in S the operator specifies a unique result (element) which is also in the set S.

Or

For the operator + the result of A + B must be found in S if A and B are in S; and for
the operator the result of A. B must also be found in S if A and B are elements in S.

2. (a) There exists an element 0 in S such that for every A in S, A + 0 = A.
2. (b) There exists an element 1 in S such that for every A in S, A.1 = A.
3. (a) A + B = B + A
3. (b) A. B = B . A
4. (a) A . (B + C) = (A . B) + (A . C)
4. (b) A + (B . C) = (A + B) . (A + C)

5. For every element A in S, there exists an element A′ such that ���� � ��������� 	 ��� � �

6. There exist at least two elements A and B in S such that A is not equivalent to B.

Therefore, if we propose the following two values. Boolean algebra system, that is, if we
define the set S = {0, 1} and prescribe the rules for ., + and INVERTER as follows:

Rules for “ . ” Rules for “+”
. 0 1 A B A.B + 0 1 A B A + B
0 0 0 or 0 0 0 0 0 1 or 0 0 0
1 0 1 0 1 0 1 1 1 0 1 1

1 0 0 1 0 1
1 1 1 1 1 1

INVERT FUNCTION (COMPLEMENT)

A A′
0 1

1 0

and test our system with postulates, we find
1. Closure is obvious—no results other than the 0 and 1 are defined.
2. From the tables (a) 0 + 0 = 0 0 + 1 = 1 + 0 = 1

(b) 1.1 = 1 1.0 = 0.1 = 0
3. The commutative laws are obvious by the symmetry of the operator tables.
4. (a) The distributive law can be proven by a TRUTH-TABLE.

A B C B + C A.(B + C) A.B A.C (A.B) + (A.C)

0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

UVW��������������
UVW�����������������

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 61

4. (b) Can be shown by a similar table.

5. From the INVERTER function table

(COMPLEMENT)

1.
 = 1.0 = 0, ��� � ��
 � �

1 +
 = 1 + 0 = 1, � 	 � � � 	
 �

6. It is obvious that the set S = {0, 1} fulfills the minimum requirements of having at
least two elements where �
�≠

From this study the following postulates can be listed below:

Table 2.2

Postulate 2 (a) A + 0 = A (b) A.1 = A Intersection Law

Postulate 3 (a) A + B = B + A (b) A.B = B.A Commutating Law

Postulate 4 (a) A(B + C) = AB + AC (b) A + BC = (A + B) (A + C) Distributive Law

Postulate 5 (a) A + � = 1 (b) A.A′ = 0 Complements Law

We have just established a two valued Boolean algebra having a set of two elements, 1
and 0, two binary operators with operation rules equivalent to the AND or OR operations, and
a complement operator equivalent to the NOT operator. Thus, Boolean algebra has been
defined in a formal mathematical manner and has been shown to be equivalent to the binary
logic. The presentation is helpful in understanding the application of Boolean algebra in gate
type circuits. The formal presentation is necessary for developing the theorems and proper-
ties of the algebraic system.

2.2.2 Basic Theorems and Properties of Boolean Algebra
Duality. The Huntington postulates have been listed in pairs and designated by part (a)

and (b) in Table 2.3. One part may be obtained from other if the binary operators (+ and .)
and identity elements (0 and 1) are interchanged. This important property of Boolean algebra
is called the duality principle. It states that every algebraic expression deducible from the
postulates of Boolean algebra remain valid if the operators and identity elements are inter-
changed. In a two valued Boolean algebra, the identity elements and the elements of the set
are same: 1 and 0.

Basic Theorems. Table 2.3 lists six theorems of Boolean algebra. The theorems, like the
postulates, are listed in pairs; each relation is the dual of the one paired with it. The
postulates are basic axioms of the algebraic structure and need no proof. The theorems must
be proven from the postulates.

Table 2.3 Theorems of Boolean Algebra

Theorem

1. (a) A + A = A (b) A.A = A Tautology Law

2. (a) A + 1 = 1 (b) A.0 = 0 Union Law

3. (A′)′ = A Involution Law

4. (a) A + (B + C) = (A + B) + C (b) A.(B.C) = (A.B).C Associative Law

5. (a) (A + B)′ = A′B′ (b) (A.B)′ = A′ + B′ De Morgan’s Law

62 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

6. (a) A + AB = A (b) A(A + B) = A Absorption Law

7. (a) A + A′B = A + B (b) A(A′ + B) = AB

8. (a) AB + AB′ = A (b) (A + B) (A + B′) = A Logical adjancy

9. (a) AB + A′C + BC = AB + A′C (b) (A + B) (A′ + C) (B + C) = (A + B)

Consensus Law

The proofs of the theorem are presented below. At the right is listed the number of
postulate which justifies each step of proof.

Theorem 1(a) A + A = A
A + A = (A + A).1 by postulate 2(b)

= (A + A) (A + A′) 5(a)
= A + AA′ 4(b)
= A + 0 5(b)
= A 2(a)

Theorem 1(b) A.A = A.
A.A = A.A + 0 by postulate 2(a)

= A.A + A.A′ 5(b)
= A(A + A′) 4(a)
= A.1 5(a)
= A 2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step the proof in part
(b) is the dual of part (a). Any dual theorem can be similarly derived from the proof of its
corresponding pair.

Theorem 2(a) A + A = 1

A + 1 = 1.(A + 1) by postulate 2(b)
= (A + A′) (A + 1) 5(a)
= A + A′.1 4(b)
= A + A′ 2(b)
= 1 5(a)

Theorem 2(b) A.0 = 0 by duality.
Theorem 3. (A′)′ = A From postulate 5, we have
A + A′ = 1 and A.A′ = 0, which defines the complement of A. The complement of A′ is

A and is also (A′)′. Therefore, since the complement is unique, we have that (A′)′ = A.
Theorem 4(a) A + (B + C) = (A + B) + C
We can prove this by perfect induction method shown in table 2.4 below:

Table 2.4

A B C (B + C) A + (B + C) (A + B) (A + B) + C

0 0 0 0 0 0 0

0 0 1 1 1 0 1

0 1 0 1 1 1 1

0 1 1 1 1 1 1

(Contd.)...

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 63

A B C (B + C) A + (B + C) (A + B) (A + B) + C

1 0 0 0 1 1 1

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

We can observe that A + (B + C) = (A + B) + C

*Theorem 4(b)—can be proved in similar fashion.

*Theorem 5(a) and 5(b)—can also be proved by perfect induction method.
Theorem 6(a) A + AB = A

A + AB = A (1 + B)
= A (1)
= A

6(b) A.(A + B) = A By duality.
Theorem 7(a) A + A′B = A + B

A + A′B = A.1 + A′B
= A (B + B′) + A′B
= AB + AB′ + A′B
= AB + AB + AB′ + A′B
= A(B + B′) + B(A + A′)
= A + B.

7(b) A.(A′ + B) = A.B By duality.
Theorem 8(a) AB + AB′ = A

AB + AB′ = A(B +B′)
= A

8(b) (A + B) . (A + B′) = A By duality.
Theorem 9(a) AB + A′C + BC = AB + A′C

AB + A′C + BC = AB + A′C + BC(A + A′)
= AB + A′C + ABC + A′BC
= AB (1 + C) + A′C (1 + B)
= AB + A′C

9(b) (A + B) (A′ + C) (B + C) = (A + B) (A′ + C) By duality.

2.3 BOOLEAN FUNCTIONS
A binary variable can take the value of 0 or 1. A Boolean function is an expression formed

with binary variable, the two binary operators OR and AND, the unary operator NOT,
parantheses and an equal sign. For a given value of the variables, the function can be either
0 or 1. Consider, for example, the Boolean function

F1 = xy′z

*The proof of 4(b), 5(a) and 5(b) is left as an exercise for the reader.

64 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The function F is equal to 1 when x = 1, y = 0 and z = 1; otherwise F1 = 0. This is an example
of a Boolean function represented as an algebraic expression. A Boolean function may also be
represented in a truth table. To represent a function in a truth table, we need a list of the 2n

combinations of 1’s and 0’s of n binary variables, and a column showing the combinations for
which the function is equal to 1 or 0 as discussed previously. As shown in Table 2.5, there
are eight possible distinct combination for assigning bits to three variables. The table 2.5 shows
that the function F1 is euqal to 1 only when x = 1, y = 0 and z = 1 and equal to 0 otherwise.

Consider now the function

F2 = x′y′z + x′yz + xy′
F2 = 1 if x = 0, y = 0, z = 1 or

x = 0, y = 1, z = 1 or

x = 1, y = 0, z = 0 or

x = 1, y = 0, z = 1

F2 = 0, otherwise.

Table 2.5

x y z F1 F2 F3

0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 0 0

1 1 1 0 0 0

The number of rows in the table is 2n, where n is the number of binary variables in the
function.

The question now arises, Is an algebraic expression of a given Boolean function unique?
Or, is it possible to find two algebraic expressions that specify the same function? The answer
is yes. Consider for example a third function.

F3 = xy′ + x′z
F3 = 1 if x = 1, y = 0, z = 0 or

x = 1, y = 0, z = 1 or
x = 0, y = 0, z = 1 or
x = 0, y = 1, z = 1

F3 = 0, otherwise.

From table, we find that F3 is same as F2 since both have identical 1’s and 0’s for each
combination of values of the three binary variables. In general, two functions of n binary
variables are said to be equal if they have the same value for all possible 2n combinations of
the n variables.

As a matter of fact, the manipulation of Boolean algebra is applied mostly to the problem
of finding simpler expressions for the same function.

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 65

2.3.1 Transformation of Boolean Function into Logic Diagram
A Boolean function may be transformed from an algebraic expresion into a logic diagram

composed of AND, OR and NOT gates. Now we shall implement the three functions discussed
above as shown in Fig. 2.1.

• Here we are using inverters (NOT gates) for complementing a single variable. In
general however, it is assumed that we have both the normal and complement
forms available.

• There is an AND gate for each product term in the expression.

• An OR gate is used to combine two or more terms.

F1
x
z

y

X

Z
Y

x

z

y

F2

F3

()a

()b

()c

Fig. 2.1 (a, b, c)

From the Fig. 2.1, it is obvious that the implementation of F3 requires fewer gates and
fewer inputs than F2. Since F3 and F2 are equal Boolean functions, it is more economical to
implement F3 form than the F2 form. To find simpler circuits, we must know how to manipu-
late Boolean functions to obtain equal and simpler expression. These simplification (or mini-
mization) techniques will be discuss in detail in next chapter.

2.3.2 Complement of a Function
The complement of a function F is F′ and is obtained from an interchange of 0’s for 1’s

and 1’s for 0’s in the value of F. The complement of a function may be derived algebraically
through De Morgan’s theorem. De Morgan’s theorem can be extended to three or more
variables. The three-variable form of the De Morgan’s theorem is derived below:

(A + B + C)′ = (A + X)′ Let B + C = X

= A′X′ by theorem 5(a)

= A′.(B + C)′ substituting B + C = X

= A′.(B′C′) theorem 5(a)

= A′B′C′ theorem 4(a)

66 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

This theorem can be generalized as

(A + B + C + D + ... F)′ = A′B′C′D′....F′
and its DUAL

(ABCD F)′ = A′ + B′ + C′ + D′ + ... + F′
The generalized form of De Morgan’s theorem states that the complement of a function

is obtained by interchaning AND and OR operators and complementing each literal.

Example. Determine the complements of the following function:

F1 = AB′ + C′D
Solution. F1 = AB′ + C′D

F1′ = (AB′ + C′D)′
= (AB′)′ . (C′D)′
= (A′ + B) . (C + D′)

2.4 REPRESENTATION OF BOOLEAN FUNCTIONS
Boolean functions (logical functions) are generally expressed in terms of logical vari-

ables. Values taken on by the logical functions and logical variables are in the binary form.
Any logical variable can take on only one of the two values 0 and 1 or any logical variable
(binary variable) may appear either in its normal form (A) or in its complemented form (A′).
As we will see shortly latter that an arbitrary logic function can be expressed in the
following forms:

(i) Sum of Products (SOP)

(ii) Product of Sums (POS)

Product Term
The AND function is reffered to as product. The logical product of several variables on

which a function depends is considered to be a product term. The variables in a product term
can appear either in complemented or uncomplemented (normal) form. For example AB′C is
a product form.

Sum Term
The OR function is generally used to refer a sum. The logical sum of several variables

on which a function depends is considered to be a sum term. Variables in a sum term also
can appear either in normal or complemented form. For example A + B + C′, is a sum
term.

Sum of Products (SOP)
The logic sum of two or more product terms is called a ‘sum of product’ expression. It

is basically an OR operation of AND operated variables such as F = A′B + B′C + A′BC.

Product of Sums (POS)
The logical product of two or more sum terms is called a ‘product of sum’ expression. It is

basically an AND operation of OR operated variables such as F = (A′ + B). (B′ + C) . (A′ + B + C).

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 67

2.4.1 Minterm and Maxterm Realization
Consider two binary variables A and B combined with an AND operation. Since each

variable may appear in either form (normal or complemented), there are four combinations,
that are possible—AB, A′B, AB′, A′B′.

Each of these four AND terms represent one of the four distinct combinations and is
called a minterm, or a standard product or fundamental product.

Now consider three variable—A, B and C. For a three variable function there are 8
minterms as shown in Table 2.6(a). (Since there are 8 combinations possible). The binary
numbers from 0 to 7 are listed under three varibles. Each minterm is obtained from an AND
term of the three variables, with each variable being primed (complemented form) if the
corresponding bit of the binary number is a 0 and unprimed (normal form) if a 1. The
symbol is mj, where j denotes the decimal equivalent of the binary number of the minterm
disignated.

In a similar manner, n variables can be combined to form 2n minterms. The 2n different
minterms may be determined by a method similar to the one shown in table for three variables.

Similarly n variables forming an OR term, with each variable being primed or unprimed,
provide 2n possible combinations, called maxterms or standard sums.

Each maxterm is obtained from an OR term of the n variables, with each variable being
unprimed if the corresponding bit is a 0 and primed if a 1.

It is intersting to note that each maxterm is the complement of its corresponding
minterm and vice versa.

Now we have reached to a level where we are able to understand two very important
properties of Boolean algebra through an example.

Table 2.6(a) Minterm and Maxterm for three binary variables

MINTERMS MAXTERMS

Decimal Eqt. A B C Term Designation Term Designation

0 0 0 0 A′B′C′ m0 A + B + C M0

1 0 0 1 A′B′C m1 A + B + C′ M1

2 0 1 0 A′BC′ m2 A + B′ + C M2

3 0 1 1 A′BC m3 A + B′ + C′ M3

4 1 0 0 AB′C′ m4 A′ + B + C M4

5 1 0 1 AB′C m5 A′ + B + C′ M5

6 1 1 0 ABC′ m6 A′ + B′ + C M6

7 1 1 1 ABC m7 A′ + B′ + C′ M7

Let we have a TV that is connected with three switches. TV becomes ‘ON’ only when
atleast two of the three switches are ‘ON’ (or high) and in all other conditions TV is ‘OFF’
(or low). The example is same as we have already discussed in section (2.1) TT.

Let the three switches are represented by three variable A, B and C. The output of TV
is represented by F. Since there are three switches (three variables), there are 8 distinct
combinations possible that is shown in TT. (Table 2.6(b)).

68 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Table 2.6(b)

 SWITCHES TV (o/p) HIGH (ON) → 1

A B C F LOW (OFF) → 0.

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The TV becomes ‘ON’ at four combinations. These are 011, 101, 110 and 111. We can say
that F is determined by expressing the combinations A′BC, AB′C, ABC′ and ABC. Since each
of these minterms result in F = 1, we should have

F = A′BC + AB′C + ABC′ + ABC

= m3 + m5 + m6 + m7.

This demonstrates an important property of Boolean algebra that ‘Any Boolean function
can be expressed as sum of minterms or as ‘Sum of product’. However, there is no guarantee
that this SOP expression will be a minimal expression. In other words, SOP expressions are
likely to have reduandancies that lead to systems which requires more hardware that is
necessary. This is where the role of theorems and other reduction techniques come into play
as will be shown in next chapter.

As mentioned, any TRUTH-TABLE INPUT/OUTPUT specifications can be expressed in
a SOP expression. To facilitate this a shorthand symbology has been developed to specify such
expressions. This is done by giving each row (MINTERM) in the TRUTH-TABLE a decimal
number that is equivalent to the binary code of that row, and specifying the expression thus:

F = Σ(m3, m5, m6, m7)

which reads: F = the sum-of-products of MINTERMS 3, 5, 6 and 7. This shorthand notation
can be furhter shortend by the following acceptable symbology:

F = Σ(3, 5, 6, 7)

Expression such as these serve as great aids to the simplification process, as shown in
next chapter.

Now, continuing with the same example, consider the complement of Boolean function
that can be read from Truth-table by forming a minterm for each combination that produces
0 in the function and by 0Ring

F′ = A′B′C′ + A′B′C + A′BC′ + AB′C′
Now, if we take the complement of F′, we get F.

F = (A + B + C) . (A + B + C′) . (A + B′ + C) (A′ + B + C)

= M0 M1 M2 M4

This demonstrates a second important property of the Boolean algebra that ‘Any Boolean

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 69

function can be expressed as product-of-maxterms or as product of sums’. The procedure for
obtaining the product of maxterms directly from Truth-table is as; Form a maxterm for
each combination of the variables that produces a 0 in the function, and then form the AND
of all those functions. Output will be equal to F because in case of maxterms 0 is unprimed.

The shortend symbology for POS expressions is as follows—

F = Π(M0, M1, M2, M4)

or F = Π(0, 1, 2, 4)

Boolean functions expressed as sum of minterms (sum of product terms) SOP or product
of maxterms, (Product of sum terms) POS are said to be in CANONICAL form or STANDARD
form.

2.4.2 Standard Forms
We have seen that for n binary variables, we can obtain 2n distinct mintersms, and that

any Boolean function can be expressed as a sum of minterms or product of maxterms. It is
sometimes convenient to express the Boolean function in one of its standard form (SOP or
POS). If not in this form, it can me made as follows:

1. Sum of Product. First we expand the expression into a sum of AND terms. Each
term is then inspected to see if it contains all the variable. If it misses one or more
variables, it is ANDed with an expression such as A + A′, where A is one of the missing
variables.

Example 1. Express the Boolean function F = x + y′z in a sum of product (sum of
minterms) form.

Solution. The function has three variables x, y and z. The first term x is missing two
variables; therefore

x = x (y + y′) = xy + xy

This is still missing one variable:

x = xy (z + z′) + xy′ (z + z′)
= xyz + xyz′ + xy′z + xy′z′

The second term y′z is missing one variable:

y′z = y′z (x + x′) = xy′z + x′y′z
Combining all terms, we have

F = x + y′z = xyz + xyz′ + xy′z + xy′z′ + xy′z + x′y′z
But xy′z appears twice, and according to theorem 1 (A + A = A), it is possible to remove

one of them. Rearranging the min terms in ascending order, we have:

F = x′y′z + xy′z′ + xy′z + xyz′ + xyz

= m1 + m4 + m5 + m6 + m7.

F(x, y, z) = Σ(1, 4, 5, 6, 7)

An alternative method for driving product terms (minterms) is to make a T.T. directly
from function. F = x + y′z. From T.T., we can see directly five minterms where the value of
function is equal to 1. Thus,

70 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

F(x, y, z) = Σ(1, 4, 5, 6, 7)

x y z F = x + y′z
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

2. Product of Sums. To express the Boolean function as product of sums, it must first
be brought into a form of OR terms. This may be done by using the distributive law A + BC
= (A + B) . (A + C). Then any missing variable A in each OR term is 0Red with AA′.

Example 2. Express the Boolean function F = AB + A′C in a product of sum (product
of mixterm) form.

Solution. First convert the function into OR terms using distributive law.

F = AB + A′C = (AB + A′) (AB + C)

= (A + A′) (B + A′) (A + C) (B + C)

= (A′ + B) (A + C) (B + C)

The function has three variables A, B and C. Each OR term is missing one variable
therefore:

A′ + B = A′ + B + CC′ = (A′ + B + C) (A′ + B + C′)
A + C = A + C + BB′ = (A + B + C) (A + B′ + C)
B + C = B + C + AA′ = (A + B + C) (A′ + B + C)

Combining all these terms and removing those that appear more than once.
F = (A + B + C) (A + B′ + C) (A′ + B + C) (A′ + B + C′)

M0 M2 M4 M5

F(x, y, z) = Π(0, 2, 4, 5)
An alternative method for deriving sum terms (maxterms) again is to make a TT directly

from function.
F = AB + A′C

From TT, we can see directly four maxterms where the value of function is equal to 0.

Thus, F(A, B, C) = Π(0, 2, 4, 5)

A B C F = AB + A′C
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

(Contd.)...

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 71

A B C F = AB + A′C
1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

2.4.3 Conversion between Standard Forms
Consider the table 2.6(b) shown in section 2.4.1 to help you establish the relationship

between the MAXTERM and MINTERM numbers.

From table we see that mj = � �

An interesting point can be made in relationship between MAXTERM lists and MINTERMS
lists. The subscript number of the terms in the MAXTERM list correspond to the same
subscript numbers for MINTERMS that are not included in the MINTERM list. From this we
can say the following:

Π (Set of MAXTERM numbers)

We know that the function derived from this list will yield precisely the same result as
the following:

Σ(set of MINTERMS numbers that are not included in the MAXTERM list)

For example:

Given, F(A, B, C) = Π(0, 1, 4, 6)

We know immediately that

F(A, B, C) = Σ(2, 3, 5, 7)

2.5 LOGIC GATES
We have seen that the foundation of logic design is seated in a well defined axiomatic

system called Boolean algebra, which was shown to be what is known as a “Huntington system”.
In this axiomatic system the definition of AND and OR operators or functions was set forth and
these were found to be well defined operators having certain properties that allow us to extend
their definition to Hardware applications. These AND and OR operators, sometimes reffered to
as connectives, actually suggest a function that can be emulated by some H/W logic device. The
Hardware logic devices just mentioned are commonly reffered to as “gates”.

Keep in mind that the usage of “gate” refers to an actual piece of Hardware where
“function” or “operation” refers to a logic operator AND. On the other hand, when we refer
to a “gate” we are reffering directly to a piece of hardware called a gate. The main point to
remember is ‘Don’t confuse gates with logic operators’.

2.5.1 Positive and Negative Logic Designation
The binary signals at the inputs or outputs of any gate can have one of the two values

except during transition. One signal levels represents logic 1 and the other logic 0. Since
two signal values are assigned two logic values, there exist two different assignments of
signals to logic.

72 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Logics 1 and 0 are generally represented by different voltage levels. Consider the two
values of a binary signal as shown in Fig. 2.2. One value must be higher than the other since
the two values must be different in order to distinguish between them. We designate the
higher voltage level by H and lower voltage level by L. There are two choices for logic values
assignment. Choosing the high-level (H) to represent logic 1 as shown in (a) defines a positive
logic system. Choosing the low level L to represent logic-1 as shown in (b), defines a negative
logic system.

Logic
value

Signal
value

Logic
value

Signal
value

1

0

H

L

0

1

H

L

(a) Positive logic (b) Negative logic

Fig. 2.2

The terms positive and negative are somewhat misleading since both signal values may
be positive or both may be negative. Therefore, it is not signal polarity that determines the
type of logic, but rather the assignment of logic values according to the relative amplitudes
of the signals.

The effect of changing from one logic designation to the other equivalent to complement-
ing the logic function because of the principle of duality of Boolean algebra.

2.5.2 Gate Definition
A ‘gate’ is defined as a multi-input (> 2) hardware device that has a two-level output. The

output level (1–H/0–L) of the gate is a strict and repeatable function of the two-level
(1–H/0–L) combinations applied to its inputs. Fig. 2.3 shows a general model of a gate.

n inputs, each of
which can take on
one of two levels
(HIGH/LOW)

Two level output that
is a strict function of
two-level input
combinations

Gate
(Hardware)

Fig. 2.3 The general model of a gate

The term “logic” is usually used to refer to a decision making process. A logic gate, then,
is a circuit that can decide to say yes or no at the output based upon inputs.

We apply voltage as the input to any gate, therefore the Boolean (logic) 0 and 1 do not
represent actual number but instead represent the state of a voltage variable or what is called
its logic level. Sometimes logic 0 and logic 1 may be called as shown in table 2.7.

Table 2.7

Logic 0 Logic 1

False True

Off On

Low High

No Yes

Open switch Close switch

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 73

2.5.3 The AND Gate
The AND gate is sometimes called the “all or nothing gate”. To show the AND gate we

use the logic symbol in Fig. 2.4(a). This is the standard symbol to memorize and use from
now on for AND gates.

Y output
A
B

Inputs
A
B

B ASWITCHES

INPUTS

Y

OUTPUT

()a

()b

Fig. 2.4 (a) AND Gate logic symbol. (b) Practical AND gate circuit

Now, let us consider Fig. 2.4(b). The AND gate in this figure is connnected to input
switches A and B. The output indicator is an LED. If a low voltage (Ground, GND) appears
at inputs, A and B, then the output LED is not glow. This situation is illustrated in table 2.8.
Line 1 indicates that if the inputs are binary 0 and 0, then the output will be binary 0. Notice
that only binary 1s at both A and B will produce a binary 1 at the output.

Table 2.8 AND Truth Table

INPUTS OUTPUTS

A B Y

Switch Binary Switch Binary Light Binary
Voltage Voltage

Low 0 Low 0 No 0

Low 0 High 1 No 0

High 1 Low 0 No 0

High 1 High 1 Yes 1

It is a +5V compared to GND appearing at
A, B, or Y that is called a binary 1 or a HIGH
voltage. A binary 0, or Low voltage, is defined
as a GND voltage (near 0V compared to GND)
appearing at A, B or Y. We are using positive
logic because it takes a positive +5V to produce
what we call a binary 1.

The truth table is said to discribe the AND
function. The unique output from the AND gate
is a HIGH only when all inputs are HIGH.

Fig. 2.4 (c) shows the ways to express that
input A is ANDed with input B to produce out-
put Y.

Fig. 2.4 (c)

Boolean
Expression

Logic
Symbol

Truth
Table

A
B

Y

AND Symbol

A . B = Y
�

A
0
0
1
1

B
0
1
0
1

Y
0
0
0
1

74 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Pulsed Operation
In many applications, the inputs to a gate may be voltage that change with time between

the two logic levels and are called as pulsed waveforms. In studying the pulsed operation of
an AND gate, we consider the inputs with respect to each other in order to determine the
output level at any given time. Following example illustrates this operation:

Example. Determine the output Y from the AND gate for the given input waveform
shown in Fig. 2.5.

A
B

0 0 1 1

t1 t2 t3 t4

INPUTS

Y ?→

Fig. 2.5

Solution. The output of an AND gate is determined by realizing that it will be high only
when both inputs are high at the same time. For the inputs the outputs is high only during
t3 period. In remaining times, the outputs is 0 as shown in Fig. 2.6.

0 0 1 0

t1 t2 t3 t4
OUTPUT Y →

Fig. 2.6

2.5.4 The OR Gate
The OR gate is sometimes called the “any or all gate”. To show the OR gate we use the

logical symbol in Fig. 2.7(a).

Y output
A
B

INPUTS A
B

B A SWITCHES

INPUTS

Y

OUTPUT

()a

()b

Fig. 2.7 (a) OR gate logic symbol. (b) Practical OR gate circuit

A truth-table for the ‘OR’ gate is shown below according to Fig. 2.7(b). The truth-table
lists the switch and light conditions for the OR gate. The unique output from the OR gate
is a LOW only when all inputs are low. The output column in Table (2.9) shows that only the
first line generates a 0 while all others are 1.

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 75

Table 2.9

INPUTS OUTPUTS

A B Y

Switch Binary Switch Binary Light Binary

Low 0 Low 0 No 0

Low 0 High 1 Yes 1

High 1 Low 0 Yes 1

High 1 High 1 Yes 1

Fig. 2.7(c) shows the ways to express that input A is ORed with input B to produce
output Y.

Boolean
Expression

Logic
Symbol

Truth
Table

A
B

Y

OR Symbol

A + B = Y

↑

A
0
0
1
1

B
0
1
0
1

Y
0
1
1
1

Fig. 2.7 (c)

Example 1. Determine the output Y from the OR gate for the given input waveform
shown in Fig. 2.8.

A
B

0 0 1

t1 t2 t3

INPUTS

Y ?→

1 0 1

Fig. 2.8

Solution. The output of an OR gate is determined by realizing that it will be low only
when both inputs are low at the same time. For the inputs the outputs is low only during
period t2. In remaining time output is 1 as shown in Fig. 2.9.

1 0 1

t1 t2 t3
OUTPUT Y →

Fig. 2.9

76 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

We are now familiar with AND and OR gates. At this stage, to illustrate at least in part
how a word statement can be formulated into a mathematical statement (Boolean expression)
and then to hardware network, consider the following example:

Example 2. Utkarsha will go to school if Anand and Sawan go to school, or Anand and
Ayush go to school.

Solution. → This statement can be symbolized as a Boolean expression as follows:

U IF A AND S

U = (A . S)

AND
Symbol

�

�

+

OR
Symbol

�

 (A . AY)

AND
Symbol

�

or

Utkarsha - U
Anand - A
Sawan - S
Ayush - AY

The next step is to transform this Boolean expression into a Hardware network and this
is where AND and OR gates are used.

A

AY

S

U

1

2

A.S

A.AY

3
(A.S) + (A.AY)

The output of gate 1 is high only if both the inputs A and S are high (mean both Anand
and Sawan go to school). This is the first condition for Utkarsha to go to school.

The output of gate 2 is high only if both the inputs A and AY are high (means both Anand
and Ayush go to school). This is the second condition for Utkarsha to go to school.

According to example atleast one condition must be fullfilled in order that Utkarsha goes
to school. The output of gate 3 is high when any of the input to gate 3 is high means at least
one condition is fulfilled or both the inputs to gate 3 are high means both the conditions are
fulfilled.

The example also demonstrates that Anand has to go to school in any condition otherwise
Utkarsha will not go to school.

2.5.5 The Inverter and Buffer
Since an Inverter is a single input device, it performs no logic interaction function

between two variables, and to say that merely changing a voltage level constitute a logic
operation would be misleading. Therefore we define it as an Inverter function rather than a
logic operator like the AND and OR operators. The NOT circuit performs the basic logical
function called inversion or complementation. That is why, it is also known as Inverter. The
NOT circuit has only input and one ouput. The purpose of this gate is to give an output that
is not the same as the input. When a HIGH level is applied to an inverter, a LOW level appears
at its output and vice versa. The logic symbol for the inverter is shown in Fig. 2.5.5(a).

If we were to put in a logic at 1 and input
A in Fig. 2.10(a), we would get out the oppo-
site, or a logical 0, at output Y.

Y OUTPUTINPUT A

Y = A or A�

Fig. 2.10 (a) A logic symbol and Boolean
expression for an inverter

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 77

The truth-table for the inverter is shown in Fig. 2.10(b). If the voltage at the input of
the inverter is LOW, then the output voltage is HIGH, if the input voltage is HIGH, then the
output is LOW. We can say that output is always negated. The terms “negated”, “comple-
mented” and “inverted”, then mean the same things.

INPUT OUTPUT

A B

Voltages Binary Voltages Binary

LOW 0 HIGH 1

HIGH 1 LOW 0

Fig. 2.10 (b) Truth-table for an inverter

Now consider the logic diagram as shown in Fig. 2.10(c), that shows an arrangement
where input A is run through two inverters. Input A is first inverted to produce a “not A” ���
and then inverted a second time for “double not A” ��� . In terms of binary digits, we find that

when the input 1 is inverted twice, we end up with original digit. Therefore, we find � � ��

AA

⇒ A = A

INPUT A OUTPUT

Logical 1
INVERT

Logical 0
INVERT

Logical 1

Fig. 2.10 (c) Effect of double inverting

The symbol shown in figure 2.11(a) is that of a non-inverting buffer/driver. A buffer
produces the transfer function but does not produce any logical operation, since the binary
value of the ouput is equal to the binary value of the input. The circuit is used merely for
power amplification of the signal and is equivalent to two inverters connected in cascade. Fig.
2.11(b) shows the T.T. for the buffer.

AA
OUTPUTINPUT

Fig. 2.11 (a) Non-inverting buffer/driver logic symbol.

INPUT OUTPUT

A B

Voltages Binary Voltage Binary

HIGH 1 HIGH 1

LOW 0 LOW 0

Fig. 2.11 (b) Truth table for buffer

Example. Determine the output Y from the inverter for the given input waveform shown
in Fig. 2.12.

0 1 0 1

t1 t2 t3 t4

INPUTS

1 1 0

t5 t6 t7
Y ?→

A

Fig. 2.12

78 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Solution. The output of an Inverter is determined by realizing that it will be high when
input is low and it will be low when input is high as shown in Fig. 2.13.

1 0 1 0

t1 t2 t3 t4

0 0 1

t5 t6 t7
OUTPUT Y →

Fig. 2.13

2.5.6 Other Gates and Their Functions
The AND, OR, and the inverter are the three basic circuits that make up all digital

circuits. Now, it should prove interesting to examine the other 14 possible ouput specification
(except AND and OR) for an arbitrary two-input gate.

Consider Table 2.10.

Table 2.10: Input/Output specifications for the 16 possible outputs derived from
two-input gates

A B GND F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 +V
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

↓ ↓ ↓ ↓ ↓ ↓
N E N A E
O X A N X O
R O N D N R

R D O
R

Scanning the table for gates that exhibit the Boolean AND and OR operator, we see that
F1 (NOR), F7 (NAND), F8 (AND) and F14 (OR) are the only outputs from gates which manifest
the AND and OR operators. We shall see very shortly that both NAND and NOR gates can
be used as AND and OR gates. Because of this, they are found in integrated circuit form. All
the rest are more complex and deemed unuseful for AND/OR implementation and are not
normally found in gate form, with two exceptions. They are F6 and F9. F6 is the Input/output
specification for a gate called the EXCLUSIVE OR gate and F9 is the specification for the
COINCIDENCE, EQUIVALENCE, or EXNOR gate, also referred to as an EXCLUSIVE NOR.

2.5.7 Universal Gates
NAND and NOR gates. The NAND and NOR gates are widely used and are readily

available in most integrated circuits. A major reason for the widespread use of these gates
is that they are both UNIVERSAL gates, universal in the sense that both can be used for
AND operators, OR operators, as well as Inverter. Thus, we see that a complex digital system
can be completely synthesized using only NAND gates or NOR gates.

The NAND Gate. The NAND gate is a NOT AND, or an inverted AND function. The
standard logic symbol for the NAND gate is shown in Fig. 2.14(a). The little invert bubble
(small circle) on the right end of the symbol means to invert the output of AND.

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 79

A
B

Y
A
B

A.B
(A.B)�

INPUTS OUTPUTS

()a ()b

Fig. 2.14 (a) NAND gate logic symbol (b) A Boolean expression for the output of a NAND gate

Figure 2.14(b) shows a separate AND gate and inverter being used to produce the NAND
logic function. Also notice that the Boolean expression for the AND gate, (A.B) and the NAND
(A.B)′ are shown on the logic diagram of Fig. 2.14(b).

The truth-table for the NAND gate is shown in Fig. 2.14(c). The truth-table for the
NAND gate is developed by inverting the output of the AND gate. ‘The unique output from
the NAND gate is a LOW only when all inputs are HIGH.

INPUT OUTPUT

A B AND NAND

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Fig. 2.14 (c) Truth-table for AND and NAND gates

Fig. 2.14 (d) shows the ways to express that input A is NANDed with input B yielding
output Y.

Boolean
Expression

Logic
Symbol

Truth
Table

A
B

Y

NOT Symbol

A
0
0
1
1

B
0
1
0
1

Y
1
1
1
0

A . B = Y
AND Symbol

or AB = Y

or (AB) = Y�

Fig. 2.14 (d)

Example 1. Determine the output Y from the NAND gate from the given input waveform
shown in Fig. 2.15.

A
B

0 1 0 1

t1 t2 t3 t4

INPUTS

Y

0 1 0 0

OUTPUT
?

Fig. 2.15

80 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Solution. The output of NAND gate is determined by realizing that it will be low only
when both the inputs are high and in all other conditions it will be high. The ouput Y is
shown in Fig. 2.16.

1 0 1 1

t1 t2 t3 t4
OUTPUT Y →

Fig. 2.16

The NAND gate as a UNIVERSAL Gate

The chart in Fig. 2.17 shows how would you wire NAND gates to create any of the other
basic logic functions. The logic function to be performed is listed in the left column of the
table; the customary symbol for that function is listed in the center column. In the right
column, is a symbol diagram of how NAND gates would be wired to perform the logic
function.

Logic
Function

Symbol Circuit using NAND gates only

Inverter

AND

OR

A
B

A A�

A.B

A
B

A + B

A
A�

A
B A.B

A

B
A + B

Fig. 2.17

The NOR gate. The NOR gate is actually a NOT OR gate or an inverted OR function.
The standard logic symbol for the NOR gate is shown in Fig. 2.18(a).

A
B

Y
A
B

A + B
(A + B)�

INPUTS OUTPUTS

(a) (b)

Fig. 2.18 (a) NOR gate logic symbol (b) Boolean expression for the output of NOR gate.

Note that the NOR symbol is an OR symbol with a small invert bubble on the right side.
The NOR function is being performed by an OR gate and an inverter in Fig. 2.18(b). The
Boolean function for the OR function is shown (A + B), the Boolean expression for the final
NOR function is (A + B)′.

The truth-table for the NOR gate is shown in Fig. 2.18(c). Notice that the NOR gate truth
table is just the complement of the output of the OR gate. The unique output from the NOR
gate is a HIGH only when all inputs are LOW.

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 81

INPUTS OUTPUTS

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

Fig. 2.18 (c) Truth-table for OR and NOR gates

Figure 2.18(d) shows the ways to express that input A is ORed with input B yielding
output Y.

Boolean
Expression

Logic
Symbol

Truth
Table

A
B

Y

NOT Symbol

A
0
0
1
1

B
0
1
0
1

Y
1
0
0
0

A + B = Y
OR Symbol

or (A + B) = Y′

Fig. 2.18 (d)

Example 2. Determine the output Y from the NOR gate from the given input waveform
shown in Fig. 2.19.

A
B

0 1 0 1

t1 t2 t3 t4

INPUTS

Y

1 1 0 0

OUTPUT
?

Fig. 2.19

Solution. The output of NOR gate is determined by realizing that it will be HIGH only
when both the inputs are LOW and in all other conditions it will be high. The output Y is
shown in Fig. 2.20.

0 0 1 0

t1 t2 t3 t4
OUTPUT Y �

Fig. 2.20

82 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The NOR gate as a UNIVERSAL gate.

The chart in Fig. 2.21 shows how would your wire NOR gates to create any of the other
basic logic functions.

Logic
Function

Symbol Circuit using NOR gates only

Inverter

AND

OR

A
B

A A�

A.B

A
B

A + B

A
A�

A
B A + B

A

B
A . B

Fig. 2.21

2.5.8 The Exclusive OR Gate
The exclusive OR gate is sometimes referred to as the “Odd but not the even gate”. It

is often shortend as “XOR gate”. The logic diagram is shown in Fig. 2.22 (a) with its Boolean
expression. The symbol ⊕ means the terms are XORed together.

A
B

Y = A B
 = AB + A B

 ⊕
′ ′

Fig. 2.22 (a)

The truth table for XOR gate is shown in Fig. 2.22 (b). Notice that if any but not all the
inputs are 1, then the output will be 1. ‘The unique characteristic of the XOR gates that it
produces a HIGH output only when the odd no. of HIGH inputs are present.’

INPUTS OUTPUTS

A B A ⊕ B = AB′ + A′B
0 0 0

0 1 1

1 0 1

1 1 0

Fig. 2.22 (b)

To demonstrate this, Fig. 2.22 (c) shows a three input XOR gate logic symbol and the truth
table of Fig. 2.22 (d). The Boolean expression for a three input XOR gate can be written as

Y = (A ⊕ B) ⊕ C
= (AB′ + A′B) ⊕ C

Now, Let X = AB′ + A′B
Therefore, X ⊕ C = XC′ + X′C

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 83

A

C
Y = A B C ⊕ ⊕B

Fig. 2.22 (c)

INPUTS OUTPUTS

A B C Y

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Fig. 2.22 (d)

Putting the value of X, we get

Y = (AB′ + A′B)C′ + (A′B′ + AB).C

Y = AB′C′ + A′BC′ + A′B′C + ABC

The HIGH outputs are generated only when odd number of HIGH inputs are present (see
T.T.)

‘This is why XOR function is also known as odd function’.

Fig. 2.22 (e) shows the ways to express that input A is XORed with input B yielding
output Y.

Boolean
Expression

Logic
Symbol

Truth
Table

A
B

Y

A
0
0
1
1

B
0
1
0
1

Y
0
1
1
0

A B = Y�

XOR Symbol

Fig. 2.22 (e)

The XOR gate using AND-OR-NOT gates:

we know A ⊕ B = AB′ + A′B

84 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

A B�

A

B

AB�

A B�
As we know NAND and NOR are universal gates means any logic diagram can be made

using only NAND gates or using only NOR gates.

XOR gate using NAND gates only.

A B⊕

A

B

XOR using NOR gates only.

A B⊕

A

B

The procedure for implementing any logic function using only universal gate (only NAND
gates or only NOR gates) will be treated in detail in section 2.6.

Example. Determine the output Y from the XOR gate from the given input waveform
shown in Fig. 2.23.

A
B

0 1 1 0

0 0 0 1
Y

0 0 1 1

0

1

0

t1 t2 t3 t4 t5

C
?

Fig. 2.23

Solution. The output XOR gate is determined by realizing that it will be HIGH only
when the odd number of high inputs are present therefore the output Y is high for time
period t2 and t5 as shown in Fig. 2.24.

0 1 0 0 1

t1 t2 t3 t4 t5

OUTPUT Y →

Fig. 2.24

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 85

2.5.9 The Exclusive NOR gate
The Exclusive NOR gate is sometimes reffered to as the ‘COINCIDENCE’ or ‘EQUIVA-

LENCE’ gate. This is often shortened as ‘XNOR’ gate. The logic diagram is shown in Fig. 2.25(a).

A
B

Y = A B
 = AB + A B

���

� �

Fig. 2.25 (a)

Observe that it is the XOR symbol with the added invert bubble on the output side. The
Boolean expression for XNOR is therefore, the invert of XOR function denoted by symbol �� .

A�� B = (A ⊕ B)′
= (AB′ + A′B)′
= (A′ + B) . (A + B′)
= AA′ + A′B′ + AB + BB′
= AB + A′B′.

The truth table for XNOR gate is shown in Fig. 2.25 (b).

INPUTS OUTPUTS

A B A�� B = AB + A′B′
0 0 1

0 1 0

1 0 0

1 1 1

Fig. 2.25 (b)

Notice that the output of XNOR gate is the complement of XOR truth table.

‘The unique output of the XNOR gate is a LOW only when an odd number of input are HIGH’.

A

C
Y = A B C���� �B

Fig. 2.25 (c)

INPUTS OUTPUTS

A B C Y

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Fig. 2.25 (d)

86 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

To demonstrate this, Fig. 2.25 (c) shows a three input XNOR gate logic symbol and the
truth-table 2.25 (d).

Fig. 2.25 (e) shows the ways to express that input A is XNORed with input B yielding
output Y.

Boolean
Expression

Logic
Symbol

Truth
Table

A
B

Y

A
0
0
1
1

B
0
1
0
1

Y
1
0
0
1

A . B = Y

Fig. 2.25 (e)

Now at this point, it is left as an exercise for the reader to make XNOR gate using AND-
OR-NOT gates, using NAND gates only and using NOR gates only.

Example. Determine the output Y from the XNOR gate from the given input waveform
shown in Fig. 2.26.

0 1 1 0

1 1 1 0
Y

0 0 1 1

0

0

0

t1 t2 t3 t4 t5

?

Fig. 2.26

Solution. The output of XNOR gate is
determined by realizing that it will be HIGH
only when the even-number of high inputs are
present, therefore the output Y is high for time
period t2 and t5 as shown in Fig. 2.27.

2.5.10 Extension to Multiple Inputs in Logic Gates
The gates we have studied, except for the inverter and buffer can be extended to have

more than two inputs.

A gate can be extended to have multiple inputs the binary operation it represents is
commutative and associative.

0 1 0 0 1

t1 t2 t3 t4 t5OUTPUT Y →

Fig. 2.27

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 87

The AND and OR operations defined in Boolean algebra, posseses these two properties.

For the NAD function, we have

x.y = y.x Commutative

and x.(yz) = (x.y).z Associative

Similarly for the OR function,

x + y = y + x Commutative

and (x + y) + z = x + (y + z) Associative

It means that the gate inputs can be interchanged and that the AND and OR function
can be extended to the or more variables.

The NAND and NOR operations are commutative but not associative. For example

*(x ↑ y) = (y ↑ x) ⇒ x′ + y′ = y′ + x′ commutative

But x ↑ (y ↑ z) ≠ (x ↑ y) ↑ z

[x.(yz)′]′ ≠ [(x.y)′.z)]′
x′ + yz ≠ xy + z′

Similarly,

**(x ↓ y) = (y ↓ x) ⇒ x′y′ = y′x′ → commutative

But x↓(y ↓ z) ≠ (x ↓ y) ↓ z

[x + (y + z)′]′ ≠ [(x + y)′ + z]′
x′y + x′z ≠ xz′ + yz′

This difficulty can be overcomed by slightly modifying the definition of operation. We
define the multiple NAND (or NOR) gate as complemented AND (or OR) gate.

Thus by this new definition, we have

x ↑ y ↑ z = (xyz)′
x ↓ y ↓ z = (x + y + z)′

The graphic symbol for 3-input NAND and NOR gates is shown in Fig. 2.28(a) and 2.28(b).

x
y
z

(x + y + z)�
x
y
z

(xyz)�

(a) Three-input
NAND gate

(b) Three-input NOR gate

Fig. 2.28

The exclusive–OR and equivalence gates are both commentative and associative and can
be extended to more than two inputs.

The reader is suggested to verify that, both X-OR and X-NOR possess commutative and
associative property.

* NAND symbol

** NOR symbol

88 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

MORE EXAMPLES
Example 1. Give the concluding statement of all the logic gates, we have studied in this

chapter.

Solution. AND: The output is HIGH only when all the inputs are HIGH, otherwise
output is LOW.

OR: The output is LOW only when all the inputs are LOW, otherwise output is HIGH.

NOT: The output is complement of input.

NAND: The output is LOW only when all the inputs are HIGH, otherwise the output
is HIGH.

NOR: The output is HIGH only when all the inputs are LOW, otherwise output is LOW.

EX-OR: The output is HIGH only when both the inputs are not same, otherwise output
is Low.

OR

The output is HIGH only when odd number of inputs are HIGH, otherwise output is
LOW.

EX-NOR: The output is HIGH only when both the inputs are same, otherwise output
is LOW.

OR

The output is HIGH only when even number of inputs are HIGH, otherwise output is
LOW.

Example 2. Show how an EX-OR gate can be used as NOT gate or inverter.

Solution. The expression for NOT gate is

y = � where y = output and A = input

The expression for EX-OR gate is

y = �� 	 ��

where A and B are inputs.

In the expression of EX-OR we see that the first term ��
can give the complement of input A, if B = 1 and second term
�� � � . So we connect the B input to logic HIGH (i.e., logic 1)
to full fill the requirements above stated. i.e.,

From Fig. 2.29

y = ��
 	 ���

or y = � i.e., complement

Thus, above connection acts as inverter or NOT gate.

Example 3. Show, how an AND gate and an OR gate can be masked.

Solution. Masking of gates means disabling the gate. It is the process of connecting a
gate in such a way that the output is not affected by any change in inputs i.e., the output
remains fixed to a logic state irrespective of inputs.

Logic 1

YA

Fig. 2.29 EX-OR Gate
connected as NOT Gate

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 89

Y = 0 always

Y = 1 always

Logic 0

Logic 1

A
B

A
B

Fig. 2.30 Masking of AND gate and OR gate

AND gate can be masked by connecting one of its input to logic LOW (i.e. logic 0) and
OR gate can be masked by connecting one of its input to logic HIGH (i.e. logic 1)

Example 4. Below shown waveforms (Fig. 2.31) are applied at the input of 2-input logic gate.

0
1 1 1 1

0 0

1
1 1

0 0 0

A

B

0

Fig. 2.31

Draw the output waveform if the gate is (a) AND gate (b) OR gate (c) EX-OR gate (d)
NAND gate (e) NOR gate.

Solution. The waveforms can be drawn by recalling the concluding statements of logic
gates given in example 1.

0
1 1 1 1

0 0

1
1 1

0 0 0

A

B

0

Output Waveforms

0
1 1 1

0 0

1 1

0

AND

OR

0
1

0 0

1 1 1

1 11 1 1
0

0

0
1 11 1 1

0

1
0 0

1
0 0

1
00 0 0 0 000

EX-OR

NAND

NOR

Fig. 2.32

90 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Example 5. Show how a 2 input AND gate, OR gate, EX-OR gate and EX-NOR gate can
be made transparent.

Solution. Transparent gate means a gate that passes the input as it is to the output i.e.
the output logic level will be same as the logic level applied at input. Let the two inputs are
A and B and output is y. We will connect the gates in such a way that it gives y = A.

For AND gate we have expression

y = A.B

if B = 1

y = A

So, connect input B to logic 1.

For OR gate we have y = A + B

if B = 0

y = A

So connect input B to logic 0.

For EX-OR gate we have y = �� 	 ��

if B = 0,

then �� = A, and �� � �

and y = A

Hence, connect input B to logic 0.

For EX-NOR gate we have y = �� 	 ��

if B = 1,

then �� = 0 and AB = A

so y = A

Hence, connect input B to logic 1

It we take multiple input logic gates then connecting them as above is called enabling
a gate.

Example 6. Determine the purpose of digital circuit of Fig. 2.34.

Y1

Y2

Y3

Y0

B

A

Fig. 2.34

Solution. From the Fig. 2.34 we see that

y0 = � � � �� 	 ��⊕
y1 = A.y0
y2 = ��
y3 = B.y0

�����

����	�

�

�

���� ���� �� ������
�������������

�� ��

������
�

����	��

���� ������ � ��� ���������
�������

������
�

����	��
����������� ��� ���������

����������

������
�

����	�

���� ������ � ��� ���������
�����������

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 91

Now we draw three truth tables, one for each of the outputs y1, y2, and y3 to determine
the purpose of the circuit.

(i) From the table (i), it is evident that
y1 = 1, only when A = 1 and B = 0.
It means that y1 is HIGH only when
A > B, as shown in third row of
Table (i).

(ii) It is evident from Table (ii) that
y2 = 1 if A = B = 0 and A = B = 1.
Thus y2 goes HIGH only when A =
B, as shown by first and last row of
Table (ii).

(iii) It is evident from Table (iii) that
y3 = 1 if A = 0 and B = 1. Thus y3
goes HIGH only when A < B (or B >
A), as shown by the second row of
table (iii).

Thus from the above discussion it can be concluded that the given circuit is 1-bit
data comparator. In this circuit, y1 indicates A > B, y2 indicate the equality of two
datas, and y3 indicates A < B.

2.6 NAND AND NOR IMPLEMENTATION
In section 2.5.7 we have seen that NAND and NOR are universal gates. Any basic logic

function (AND, OR and NOT) can be implemented using these gates only. Therefore digital
circuits are more frequently constructed with NAND or NOR gates than with AND, OR and
NOT gates. Moreover NAND and NOR gates are easier to fabricate with electronic compo-
nents and are the basic gates used in all IC digital logic families. Because of this prominence,
rules and procedures have been developed for implementation of Boolean functions by using
either NAND gates only or NOR gates only.

2.6.1 Implementation of a Multistage (or Multilevel) Digital Circuit using NAND
Gates Only

To facilitate the implementation using NAND gates only, we first define two graphic
symbols for these gates as follows-shown in Fig. 2.35(a) and (b).

(a) The AND-invert symbol (b) The invert-OR symbol

x
y
z

F = (xyz)�
x
y
z

F = x + y + z� � �

(xyz)�=
(a) (b)

 (a) This symbol we have been difined in section (2.5). It consists of an AND
grpahic symbol followed by a small circle.

(b) This is an OR graphic symbol proceded by small circtes in all the inputs.

Fig. 2.35

A
0
0
1
1

B
0
1
0
1

Y
0
1
1
0

0 Y
0
0
1
0

1

Table (i)

Table (ii)

A
0
0
1
1

B
0
1
0
1

Y
0
1
1
0

0 Y
0
1
0
0

1

Table (iii)

A
0
0
1
1

B
0
1
0
1

Y
0
1
1
0

0 Y
1
0
0
1

1

92 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

To obtain a multilevel NAND circuit from a given Boolean function, the procedure is as
follows:

1. From the given Boolean function, draw the logic diagam using basic gates (AND, OR
and NOT). In implementing digital circuit, it is assumed that both normal and invented
inputs are available. (e.g., If x and x′ both are given in function, we can apply then
directly that is there is no need to use an inverter or NOT gate to obtain x′ from x).

2. Convert all AND gates to NAND using AND-invert symbol.

3. Convert all OR gates to NAND using Invert-OR symbol.

4. Since each symbol used for NAND gives inverted output, therefore it is necessary
to check that if we are getting the same value as it was at input. [For example if
the input is in its normal from say x, the output must also be x, not x′ (inverted
or complemented value). Similarly if input is in its complemented form say x′, the
ouput must also be x′, not x (normal value)].

If it is not so, then for every small circle that is not compensated by another small
circle in the same line, insert an inverter (i.e., one input NAND gate) or comple-
ment the input variable.

Now consider a Boolean function to demonstrate the procedure:

Y = A + (B′ + C) (D′E + F)

Step 1. We first draw the logic diagram using basic gates shown in Fig. 2.36. (It is
assumed that both normal and complemented forms are available i.e., no need of inverter).

Y
A

B′
C

D′
E

F
I Level II Level III Level IV Level

Fig. 2.36

There are four levels of gating in the circuits.

Step 2 and 3

Y
A

B�
C

D�

E

F
Fig. 2.37

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 93

Here, we have converted all AND gates to NAND using AND-invert and all OR gates to
NAND using invert OR symbol shown in Fig. 2.37.

Step 4. From the Fig. 2.37 obtained from step 2 and 3, it is very clear that only two
inputs D′ and E are emerging in the original forms at the output. Rest i.e., A, B′, C and F
are emerging as the complement of their original form. So we need an inverter after inputs
A, B′, C and F or alternatively we can complement these variables as shown in Fig. 2.38.

Y
A�

B
C�

D�

E

F�

Fig. 2.38

Now because both the symbols AND-invert and invert-OR represent a NAND gate, Fig.
2.38 can be converted into one symbol diagram shown in Fig. 2.39. The two symbols were
taken just for simplicity of implementation.

Y
A′

B
C′

D′
E

F′

Fig. 2.39

After a sufficient practice, you can directly implement any Boolean function a shown in
Fig. 2.39.

2.6.2 Implementation of a Multilevel digital circuit using NOR Gates only
We first define two basic graphic symbols for NOR gates as shown in Fig. 2.40 (a)

and (b).

(a) The OR-invert symbol (b) The invert-AND symbol

x
y
z

F = (x + y + z)�
x
y
z

F = x y z
(x + y + z)

�

���� �

� �

=

(a) This is an OR graphic symbol
followed by a small circle.

(b) This is an AND graphic symbol proceded
by small circles in all the inputs.

Fig. 2.40 (a) (b)

94 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Procedure to obtain a multilevel NOR circuit from a given Boolean function is as follows:

1. Draw the AND-OR logic diagram from the given expression. Assume that both
normal and complemented forms are available.

2. Convert all OR gates to NOR gates using OR-invert symbol.

3. Convert all AND gates to NOR gates using invert-AND symbol.

4. Any small circle that is not complement by another small circle along the same line
needs an inverter (one input NOR gate) or the complementation of input variable.

Consider a Boolean expression to demonstrate the procedure:

Y = �� 	 ����� 	 � � � 	 �� 	 �′ ′ ′

Step 1. We first draw the AND-OR logic diagram shown in Fig. 2.41.

A′
B

C
D′

E

F

I Level II Level III Level IV Level

G′

Y

Fig. 2.41

There are four levels of gating in the circuit.

Step 2 and 3. Here we have to convert all OR gates to NOR using OR-invert and all
AND gates to NOR using invert AND symbol. This is shown in Fig. 2.42.

A′
B

C
D′

E

F
G′

Y

Fig. 2.42

Step 4. From Fig. 2.42, it is clear that all the input variables are imerging in the same
form at the ouput Y as they were at input. Therefore there is no need of inverter at inputs
or complementing the input variables.

Here again, both symbols OR-invert and invent-AND represent a NOR gate, so the
diagram of Fig. 2.42 can be converted into one symble shown in Fig. 2.43.

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 95

A′
B

C
D′

E

F
G′

(A + B)′′

(C + D)′ ′

Y

Fig. 2.43

2.7 EXERCISE
1. Write Boolean equations for F1 and F2.

A B C F1 A B C F2

0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 1

0 1 0 0 0 1 0 1

0 1 1 0 0 1 1 1

1 0 0 0 1 0 0 0

1 0 1 1 1 0 1 1

1 1 0 0 1 1 0 1

1 1 1 1 1 1 1 0

2. Consider 2-bit binary numbers, say A, B and C, D. A function X is true only when
the two numbers are different construct a truth table for X.

3. Draw truth table and write Boolean expression for the following:

(a) X is a 1 only if A is a 1 and B is a 1 or if A is 0 and B is a 0.

(b) X is a 0 if any of the three variables A, B and C are 1’s. X is a 1 for all other
conditions.

4. Prove the following identities by writing the truth tables for both sides:

(a) A.(B + C) = (A.B) + (A.C)

(b) (A.B.C)′ = A′ + B′ + C′
(c) A.(A + B) = A

(d) A + A′B = A + B

5. Prove the following:

(a) �! "� �! " � !+ + ′ =
(b) !" ! # "# !" ! #+ ′ + = + ′
(c) � � �! " ! "+ ′ =
(d) � � � �! " ! # ! " #+ + = + +

(e) � � � �! " # ! " # ! "+ + + + ′ = +

96 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

6. Without formally deriving can logic expression, deduct the value of each function
W, X, Y, Z.

A B C W X Y Z

0 0 0 0 1 0 1

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 0 1 0 0

1 0 0 0 1 1 1

1 0 1 0 1 1 0

1 1 0 0 1 1 0

1 1 1 0 1 1 0

7. A large room has three doors, A, B and C, each with a light switch that can tura
the room light ON or OFF. Flipping any switch will change the condition of the
light. Assuming that the light switch is off when the switch variables have the
values 0, 0, 0 write a truth table for a function LIGHT that can be used to direct
the behaviour of the light. Derive a logic equation for light.

8. Use DeMorgan’s theorm to complement the following Boolean expression.

(a) Z = # � �� � � �� � �+

(b) Z = � � � � � �� � � �+ ′ + ′

(c) # � � �′ + Υ

(d) � � �� 	 ���� ′′

(e) � � �� 	 � � �� 	 �′ ′ ′b g
(f) � � � 	 � � �� 	 ��� ′ ′b g
(g) � � ����� �� � $%&� �'���′ ′ ′ + ′ ′ ′ ′� �b g b g
(h) � � �� 	 �� � 	 �� � 	 �� 	 $�′ ′ ′ ′ ′ ′� � �b g

9. A certain proposition is true when it is not true that the conditions A and B both
hold. It is also true when conditions A and B both hold but condition C does not.
Is the proposition true when it is not true that conditions B and C both hold? Use
Boolean algebra to justify your answer.

10. Define the following terms:

(a) Connical

(b) Minterm

(c) Mexterm

(d) Sum-of-sums form

(e) Product-of-sum form

(f) Connical sum-of-product

(g) Connical product-of-sums

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 97

11. Write the standard SOP and the standard POS form for the truth tables:

(a) x y z F (b) x y z F

0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 0
0 1 1 0 0 1 1 1
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 1
1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1

12. Convert the following expressions into their respective connical forms:

(a) �� 	 � �� 	 ���′ ′
(b) �� 	 � 	� � �� 	 ��′

13. Which of the following expressions is in sum of product form? Which is in product
of sums form?

(a) A + (B.D)′
(b) ��� �� 	 � 	 �′ ′
(c) (A + B).C

14. Find the connical s-of-p form for the following logic expressions:

(a) (� ��� 	 �� �′
(b) � �)!(" 	 (!"#′ ′

15. Write down the connical s-of-p form and the p-of-s form for the logic expression
whose TT is each of the following.

(a) x1 y2 z3 Z (b) W X Y Z F
0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0 1
0 1 1 1 0 0 1 1 0
1 0 0 1 0 1 0 0 1
1 0 1 1 0 1 0 1 0
1 1 0 0 0 1 1 0 1
1 1 1 1 0 1 1 1 1

1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

98 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

16. Convert the following expressions to sum-of-product forms:

(a) �� 	 �� ��� 	 ���′

(b) �� �� � 	 ���′ ′

(c) � 	 � �� 	 �� 	 �� �′

17. Given a Truth table

(a) Express W1 and W2 as a sum of minterms

(b) Express W1 and W2 as product of minterms

(c) Simplify the sum of minterm expressions for W1 and W2 using Boolean algebra.

18. Draw logic circuits using AND, OR and NOT gates to represent the following:

(a) �� 	 � �′ ′ (b) �� 	 � � 	 � ��′ ′ ′

(c) � 	 � � 	 � �� 	 � �′ (d) � 	 �� 	 � �� 	 � �′ ′ ′

(e) ���� ����′ ′ ′

19. Produce a graphical realization of Inverter, AND, OR and XOR using:

(a) NAND gates

(b) NOR gates

20. Implement the Boolean function

� � �� �� 	 � ��� 	 �� � � 	 � �� �′ ′ ′ ′ ′ ′ ′ ′ with exclusive-OR and AND gates.

21. Draw the logic circuits for the following functions.

22. A warning busser is to sound when the following conditions apply:

(a) Switches A, B, C are on.

(b) Switches A and B are on but switch C is off.

(c) Switches A and C are on but switch B is off.

(d) Switches B and C are on but switch A is off.

Draw a truth table and obtain a Boolean expression for all conditions. Also draw the
logic diagram for it using (i) NAND gates (ii) NOR gates. If the delay of a NAND
gate is 15 ns and that of a NOR gate is 12 ns, which implementation is tester.

23. Obtain the following operations using only NOR gates.

(a) NOT (b) OR (c) AND

24. Obtain the following operations using only NAND gates.

(a) NOT (b) AND (c) OR

25. Find the operation performed for each of the gets shown in figure below, with the
help the truth table.

(a)
A
B

Y (b)
A
B

Y

(c)
A
B

Y (d)
A
B

Y

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 99

26. Write the expression for EX-OR operation and obtain

(i) The truth table

(ii) Realize this operation using AND, OR, NOT gates.

(iii) Realize this operation using only NOR gates.

27. Varify that the (i) NAND (ii) NOR operations are commutative but not associate.

28. Varify that the (i) AND (ii) OR (iii) EX-OR operations are commutative as well as
associative.

29. Prove that

(i) A positive logic AND operation is equivalent to a negative logic OR operation
and vice versa.

(ii) A positive logic NAND operation is equivalent to a negative logic NOR opera-
tion and vice versa.

30. Prove the logic equations using the Boolean algebraic (switching algebraic) theo-
rems.

(i) � 	 �� 	 �� � � 	 �

(ii) �� 	 �� 	 �� � ��

Varify these equations with truth table approach.

31. Prove De Morgan’s theorems.

32. Using NAND gates produce a graphical realization of

(a) Inverter

(b) AND

(c) OR

(d) XOR

33. Using NOR gates also produce a graphical realization of

(a) Inverter

(b) AND

(c) OR

34. Prove (X + Y) (X + Y′) = X

35. XY + X′Z + YZ = XY + X′Z
36. Prove the following:

37. (a) (A + B)′ = A.B (b) (A + B) (A + C) = A + BC

38. Prove the identifies:

(i) A = (A + B) (A + B)¢

(ii) A + B = (A + B + C) (A + B + C′)
39. Obtain the simplified expressions in s-of-p for the following Boolean functions:

(a) �� � �� � ��+ ′ ′ + ′ ′

(b) ��� 	 � � � � � 	 � �� 	 �� �′ ′ ′ + ′ ′ ′ ′ ′

100 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(c) � � � �� � � � ��′ + ′ ′ + ′ + ′� �

(d) � �� � �* * � � * * * �= Σ + , - .

(e) � ��* ��* �� � �� 	 ��′

40. Convert the following expressions into their respective Canonical forms

(a) AC + A'BD + ACD'

(b) (A + B + C') (A + D)

41. Write the standard SOP and the standard POS form for the truth tables

(a) (b)

x y z F(x, y, z) x y z F(x, y, z)

0 0 0 1 0 0 0 1

0 0 1 1 0 0 1 0

0 1 0 1 0 1 0 0

0 1 1 0 0 1 1 1

1 0 0 1 1 0 0 1

1 0 1 0 1 0 1 1

1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1

42. Consider 2-bit binary numbers, say A, B and C, D. A function X is true only when
the two numbers are different.

(a) Construct a truth table for X

(b) Construct a four-variable K-Map for X, directly from the word definition of X

(c) Derive a simplified logic expression for X.

43. Show an implementation of the half-adder using NAND gates only.

44. A three-bit message is to be transmitted with an even-parity bit.

(i) Design the logic circuit for the parity generator.

(ii) Design the logic circuit for the parity checker.

45. Implement the Boolean function: F = AB′CD′ + A′BCD′ + AB′C′D + A′BC′D′ with
exclusive-OR and AND gates.

46. Construct a 3-to-8 line decoder.

47. Construct a 3 × 8 multiplexer.

48. Construct a 8 × 3 ROM using a decoder and OR gates.

49. Construct a 16 × 4 ROM using a decoder and OR gates.

50. Determine which of the following diodes below are conducting and which are non
conducting.

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 101

R

–5v

D1 D2

R

–10v

–5v

D2

D1–12v

+5v
R

–5v

51. Determine which transistors are ON are which are OFF.

–5v

+5v –10v

–15v

+10v

–2v

–6v

52. Construct voltage and logic truth tables for the circuits shown below. Determine

A

(i)C

B

D1

D2

D3

R
1 = +5v
0 = –5v

–10v

(i)

A Output

C

B

D1

D2

D3

R

1 = 0v
0 = –5v

+5v

(ii)

the logic operation performed by each. Assume ideal diodes i.e., –neglect the volt-
age drop across each diode when it is forward biased.

53. Draw the logic circuits for the following functions:

(a) ������ � 	 � 	 �′ ′

(b) �� 	 �� � 	 �′ �

(c) �� 	 ����� 	 ��′

54. Prove the following identities by writing the truth tables for both sides.

(a) A.(B + C) == (A.B) + (A.C)

(b) (A.B.C)′ == A′ + B′ + C′

102 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(c) A.(A + B) == A

(d) A + A′.B == A + B

55. A warningbuzzer is to sound when the following conditions apply:

• Switches A, B, C are on.

• Switches A and B are on but switch c is off.

• Switches A and C are on but switch B is off.

• Switches C and B are on but switch A is off.

Draw a truth table for this situation and obtain a Boolean expression for it. Mini-
mize this expression and draw a logic diagram for it using only (a) NAND (b) NOR
gates. If the delay of a NAND gate is 15ns and that of a NOR gate is 12ns, which
implementation is faster.

56. Which of the following expressions is in sum of products form? Which is in product
of sums form?

(a) A.+(B.D)′
(b) C.D′.E + F′ + D

(c) (A + B).C

57. Without formally deriving an logic expressions, deduce the value of each function
W, X, Y and Z.

A B C W X Y Z

0 0 0 0 1 0 1

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 0 1 0 0

1 0 0 0 1 1 1

1 0 1 0 1 1 0

1 1 0 0 1 1 1

1 1 1 0 1 1 0

58. Define the following terms:

(a) Canonical

(b) Minterm

(c) Maxterm

(d) Sum-of-products form

(e) Product-of-sum form

(f) Canonical sum-of-products

(g) Canonical product-of-sums

59. An audio (beeper) is to be activated when the key has been removed from the
ignition of a car and the headlights are left on. The signal is also to be activated
if the key is in the ignition lock and the driver’s door is opened. A 1 level is
produced when the headlight switch is on. A 1 level is also produced from the

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 103

ignition lock when the key is in the lock, and a 1 level is available from the driver’s
door when it is open. Write the Boolean equation and truth table for this problem.

60. A car has two seat switches to detect the presence of a passenger and two seat belt
switches to detect fastened seat belts. Each switch produces a 1 output when
activated. A signal light is to flash when the ignition when the ignition is switched
on any passenger present without his or her seat belt fastened. Design a suitable
logic circuit.

61. Draw logic diagrams for the simplified expressions found in Question 37 using.

• NAND gates only.

• NOR gates only.

Assume both A and A′, B and B′ .. etc. are available as inputs.

62. You are installing an alarm bell to help protect a room at a museum form unau-
thorized entry. Sensor devices provide the following logic signals:

ARMED = the control system is active

DOOR = the room door is closed

OPEN = the museum is open to the public

MOTION = There is motion in the room

Devise a sensible logic expression for ringing the alarm bell.

63. A large room has three doors, A, B and C, each with a light switch that can turn the
room light ON or OFF. Flipping any switch will change the condition of the light.
Assuming that the light switch is off when the switch variables have the values 0,
0, 0 write a truth table for a function LIGHT that can be used to direct the behaviour
of the light. Derive a logic equation for LIGHT. Can you simplify this equation?

64. Design a combinational circuit that accepts a three-bit number and generates an
output binary number equal to the square of the input number.

65. Design a combinational circuit whose input is a four-bit number and whose output
is the 2’s compliment of the input number.

66. A combinational circuit has four inputs and one output. The output is equal to 1
when (I) all the inputs are equal to 1 or (II) none of the inputs are equal to 1 or
(III) an odd number of inputs are equal to 1.

(i) Obtain the truth table.

(ii) Find the simplified output function in SOP

(iii) Find the simplified output function in POS

(iv) Draw the two logic diagrams.

67. Find the canonical s-of-p form the following logic expressions:

(a) W = ABC + BC′D
(b) F = VXW′Y + W′XYZ

68. A certain proposition is true when it is not true that the conditions A and B both
hold. It is also true when conditions A and B both hold but condition C does not.
Is the proposition true when it is true that conditions B and C both hold ? Use
Boolean algebra to justify your answer.

104 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

69. Write down the canonical s-of-p form and the p-of-s form for the logic expression
whose truth table is each of the following.

(I) X1 X2 X3 Z (II) A B C W

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 1 0 0 0 1 0 1

0 1 1 1 0 1 1 0

1 0 0 1 1 0 0 1

1 0 1 1 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1

(III) W X Y Z F

0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 1 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

70. Use Question 5.

(a) Using K-maps, obtain the simplified logic expressions for both s-of-p and p-of-s
for each truth table in the question 5 above.

(b) From the p-of-s expressions, work backwards using a K-map to obtain the
s-of-p canonical expression for each truth table.

71. Apply De-Morgan’s theorems to each expression

(a) � 	 � (b) �� (c) � 	 � 	 � (d) � � �

(e) � �� 	 �� (f) �� ��+ (g) �� 	 �� (h) �� 	 �� 	 � 	 ���

DIGITAL DESIGN FUNDAMENTALS—BOOLEAN ALGEBRA AND LOGIC GATES 105

(i) � ����� ��� � $%&� �'���+ (j) � 	 �� �� ��+ +

(k) � � � �� 	 �� � 	 �� � 	 �� 	 $�

72. Convert the following expressions to sum-of-products forms:

(a) �� 	 �� ��� 	 ��� (b) �� ��� 	 ��� (c) � 	 � /�� 	 �� 	 �� �0

73. Write a Boolean expression for the following

(a) X is a 1 only if a is a 1 and B is a 1 or if A is a 0 and B is a 0

(b) X is a 0 if any of the three variables A, B and C are 1’s. X is a 1 for all other
conditions.

74. Draw logic circuits using AND, OR and NOT elements to represent the following

(a) �� 	 �� (b) �� 	 �� 	 ��� (c) � 	 � /� 	 ��� 	 ��0

(d) � 	 �� 	 ��� 	 �� (e) ���� ���� (f) [(A + B) (C + D)]E + FG

75. Use Duality to derive new Boolean identities from the ones you obtained by sim-
plification in the previous question.

76. Use De Morgan’s Theorem to complement the following Boolean expressions

(a) � � � � � ��� � �+
(b) � � � � � � �= + +� � �� �

x

y

Prove this imlements XOR.

(c) � � �= +
(d) � � � �= + �

(e) � � � �= +� ��

(f) � � � �= + �

77. Using Boolean Algebra verify that the circuit in figure 1 implements an exclusive
OR (XOR) function

(a) Express z1 and z2 as a sum of minterms

(b) Express z1 and z2 as a product of maxterms

(c) Simplify the sum of the minterm for z1 and z2 using Boolean algebra.

106 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

3.0 INTRODUCTION
The minimization of combinational expression is considered to be one of the major steps

in the digital design process. This emphasis on minimization stems from the time when logic
gates were very expensive and required a considerable amount of physical space and power.
However with the advent of Integrated circuits (SSI, MSI, LSI and VLSI) the traditional
minimization process has lessened somewhat, there is still a reasonable degree of correlation
between minimizing gate count and reduced package count.

It is very easy to understand that the complexity of logical implementation of a Boolean
function is directly related to the complexity of algebraic expression from which it is imple-
mented.

Although the truth table representation of a Boolean function is unique, but when
expressed algebraically, it can appear in many different forms.

Because of the reason mentioned above, the objective of this chapter is to develop an
understanding of how modern reduction techniques have evolved from the time consuming
mathematical approach (Theorem reduction) to quick graphical techniques called ‘mapping’
and ‘tabular method’ for large number of variable in the combinational expression.

3.1 MINIMIZATION USING POSTULATES AND THEOREM OF BOOLEAN ALGEBRA
The keys to Boolean minimization lie in the theorems introduced in chapter 2, section

2.3.2. The ones of major interest are theorem numbers 6, 7 and 8.

Then, 6 (a) A + AB = A (b) A (A + B) = A Absorption

7 (a) A + A′B = A + B (b) A (A′ + B) = AB

8 (a) AB + AB′ = A (b) (A + B) (A + B′) = A Logic Adjacency

Theorem 6 and 7 have special significance when applied to expression in standard form,
whereas theorem 8 is of particular importance in simplifying canonical form expression.

— Theorem 6 has a word statements—If a smaller term or expression is formed entirely
in a larger term, then the larger term is superfluous.

Theorem 6 can be applied only when an expression is in a ‘standard form’, that is, one
that has at least one term which is not a MIN or MAX term.

106

C
H

A
P

T
E

R 3
BOOLEAN FUNCTION

MINIMIZATION TECHNIQUES

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 107

Example 1 F = CD + AB′C + ABC′ + BCD

Thm 6 �∵�� � ���� � ���

= CD + AB′C + ABC′
Select one of the smaller terms and examine the larger terms which contain this smaller

term.

— for application of Theorem 7, the larger terms are scanned looking for of application
the smaller in its complemented form.

Example 2 F = AB + BEF + A′CD + B′CD

= AB + BEF + CD (A′ + B′)
= AB + BEF + CD (AB)′ → Using Demorgan’s

Theorem

 Thm 7

= AB + BEF + CD �∵ �� � �� �� � ��� � ��	′

— Theorem 8 is the basis of our next minimization technique i.e., Karnaugh map
method. It has a word statement—‘If any two terms in a canonical or standard form expression
vary in only one variable, and that variable in one term is the complement of the variable in
the other term then of the variable is superfluous to both terms.

Example 3 F = A′B′C′ + A′B′C + ABC′ + AB′C

����� �����

F = A′B′ + AC

Example 4 F = A′B′C′ + AB′C′ + ABC′ + A′B′C

�����

�����

= A′B′ + AC′
By now it should become obvious that another techniques is needed because this tech-

niques backs specific rules to predict each succeeding step in manipulative process.

Therefore, if we could develop some graphical technique whereby the application of
‘Theorem 8’ the logical adjacency theorem is made obvious and where the desired grouping
could be plainly displayed, we would be in mind better position to visualize the proper
application of theorem.

3.2 MINIMIZATION USING KARNAUGH MAP (K-MAP) METHOD
In 1953 Maurice Karnaugh developed K-map in his paper titled ‘The map method for

synthesis of combinational logic circuits.

The map method provides simple straight forward procedure for minimizing Boolean
functions that may be regarded as pictorial form of truth table. K-map orders and displays the
minterms in a geometrical pattern such that the application of the logic adjacency theorem
becomes obvious.

108 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

— The K-map is a diagram made up of squares. Each square represents one minterm.

— Since any function can be expressed as a sum of minterms, it follows that a Boolean
function can be recognized from a map by the area enclosed by those squares.
Whose minterms are included in the operation.

— By various patterns, we can derive alternative algebraic expression for the same
operation, from which we can select the simplest one. (One that has minimum
member of literals).

Now, let us start with a two variable K map.

3.2.1 Two and Three Variable K Map
If we examine a two variable truth table, Fig. 3.1(a) we can make some general obser-

vations that support the geometric layout of K Map shown in Fig. 3.1(b).
Truth Table

Min-
term

INPUTS OUTPUTS
A B
0
0
1
1

0
1
0
1

Y
y
y
y
y

0
1
2
3

m
m
m
m

0
1
2
3

0

2

1

3

A

A

�

B� B

or
y

y

0

2

0

1

0 1

y

y

1

3

B
A

(a) (b) (c)

Fig. 3.1 (a) (b) and (c)

The four squares (0, 1, 2, 3) represent the four possibly combinations of A and B in a two
variable truth table. Square 1 in the K-map; then, stands for A′B′, square 2 for A′B, and so
forth. The map is redrawn in Fig. 3.1(c) to show the relation between the squares and the
two variables. The 0’s and 1’s marked for each row and each column designate the values of
variables A and B respectively. A appears primed in row 0 and unprimed in row 1. Similarly
B appears primed in column 0 and unprimed in column 1.

Now let us map a Boolean function Y = A + B.

Method I—(i) Draw the truth table of given function. [Fig. 3.2(a)]

Min-term A B Y

m0 0 0 0

m1 0 1 1

m2 1 0 1

m3 1 1 1

Fig. 3.2(a)

(ii) Draw a two variable K map an fill those squares with a 1 for which the value of
minterm in the function is equal to 1. [Fig. 3.2(b)]

1

1

1

0

1

0 1

�
m

m

0

2

0

1

0 1

m

m

1

3

B
A

B
A

Fig. 3.2(b)

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 109

The empty square in the map represent the value of minterms [m0 (or A′B′)] that is equal
to zero in the function. Thus, actually this empty square represents zero.

Method II-(i) Find all the minterms of the function Y = A + B.
Y = A + B = A(B + B′) + B(A + A′)

= AB + AB′ + AB + A′B
Y = AB + AB′ + A′B

(ii) Draw a two variable K map using this sum of minterms expression.

Y = AB + AB + A B��

� � �
11 10 01 1

1

1

0

1

0 1B
A

— These K map, is nothing more than an interesting looking Truth-Table, and it simply
provide a graphical display of ‘implicants’ (minterms) involved in any SOP canonical or stand-
ard form expression.

Now examine a three variable truth table shown in Fig. 3.3 (a).
Truth Table

Min term INPUTS OUTPUT

A B C Y

m0 0 0 0 y0

m1 0 0 1 y1

m2 0 1 0 y2

m3 0 1 1 y3

m4 1 0 0 y4

m5 1 0 1 y5

m6 1 1 0 y6

m7 1 1 1 y7

Fig. 3.3 (a)

Here we need a K-map with 8 squares represent all the combination (Minterms) of input
variables A, B and C distinctly. A three-variable map is shown in Fig. 3.3 (b).

m

m

0

4

0

1

00 01

m

m

1

5

BC
A

m

m

3

7

m

m

2

6

11 10

Fig. 3.3 (b)

It is very important to realize that in the three variable K-map of Fig. 3.3 (b), the
minterms are not arranged in a binary sequence, but similar to ‘Gray Code’ sequence.

The gray code sequence is a unit distance sequence that means only one bit changes in
listing sequence.

110 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Our basic objective in using K-map is the simplify the Boolean function to minimum
number of literals. The gray code sequencing greatly helps in applying. ‘Logic Adjacency
theorem’ to adjacent squares that reduces number of literals.

The map is Fig. 3.3 (b) is redrawn in Fig. 3.3 (c) that will be helpful to make the pictures
clear.

A B C�� �0

1

00 01
BC

A 11 10

A B C� � A BC� A BC� �

AB C�� AB C� ABC ABC�

Fig. 3.3 (c)

We can see that any two adjacent squares in the map differ by only one variable, which
is primed in one square and unprimed in other.

For example m3 (A′BC) and m7 (ABC) are two adjacent squares. Variable A is primed in
m3 and unprimed in m7, whereas the other two variables are same in both squares. Now
applying ‘logic adjacency’ theorem, it is simplified to a single AND term of only two literals.
To clarify this, consider the sum of m3 and m7 → m3 + m7 = A′BC + ABC = BC(A + A′) = BC.

3.2.2 Boolean Expression Minimization Using K-Map
1. Construct the K-map as discussed. Enter 1 in those squares corresponding to the

minterms for which function value is 1. Leave empty the remaining squares. Now
in following steps the square means the square with a value 1.

2. Examine the map for squares that can not be combined with any other squares and
form group of such single squares.

3. Now, look for squares which are adjacent to only one other square and form groups
containing only two squares and which are not part of any group of 4 or 8 squares.
A group of two squares is called a pair.

4. Next, group the squares which result in groups of 4 squares but are not part of an
8-squares group. A group of 4 squares is called a quad.

5. Group the squares which result in groups of 8 squares. A group of 8 squares is
called octet.

6. Form more pairs, quads and outlets to include those squares that have not yet been
grouped, and use only a minimum no. of groups. There can be overlapping of
groups if they include common squares.

7. Omit any redundant group.
8. Form the logical sum of all the terms generated by each group.

Using Logic Adjacency Theorem we can conclude that,
— a group of two squares eliminates one variable,
— a group of four squares eliminates two variable and a group of eight squares

eliminates three variables.
Now let us do some examples to learn the procedure.
Example 1. Simplify the boolean for F = AB + AB′ + A′B. Using two variable K-map.
This function can also be written as

F(A, B) = Σ(1, 2, 3)

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 111

Solution. Step 1. Make a two variable K-map and enter 1 in squares corresponding to
minterms present in the expression and leave empty the remaining squares.

m

m

0

2

0

1

0 1

m

m

1

3

B
A

Step 2. There are no 1’s which are not adjacent to other 1’s. So this step is discarded.

1

1

1

0

1

0 1B
A

Step 3. m1 is adjacent to m3, therefore, forms a group of two squares and is not part
of any group of 4 squares. [A group of 8 squares is not possible in this case].

1

1

1

0

1

0 1B
A

Similarly m2 is also adjacent to m3 therefore forms another group of two squares and
is not a part of any group of 4 squares.

Step 4 and 5. Discarded because these in no quad or octet.

Step 6. All the 1’s have already been grouped.

There is an overlapping of groups because they include common minterm m3.

Step 7. There is no redundant group.

Step 8. The terms generated by the two groups are ‘OR’ operated together to obtain the
expression for F as follows:

F = A + B

↓ ↓
From From group
group m2 m3 m1 m3

↓ ↓
This row is This column is
corresponding corresponding to
to the value the value of B is
of A is equal equal to 1.
to 1.

Example 2. Simplify the Boolean function F (A, B, C) = Σ (3, 4, 6, 7).

Solution. Step 1. Construct K-map.

There are cases where two squares in the map are considered to be adjacent even
through they do not touch each other. In a three variable K-map, m0 is adjacent to m2 and
m4 is adjacent to m6.

112 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Algebraically m0 + m2 = A′B′C′ + A′BC′ = A′C′
and m4 + m6 = AB′C′ + ABC′ = AC′

m

m

0

4

0

1

00 01

m

m

1

5

BC
A

m

m

3

7

m

m

2

6

11 10

Consequently, we must modify the definition of adjacent squares to include this and other
similar cases. This we can understand by considering that the map is drawn on a surface
where the right and left edges touch each other to form adjacent squares.

Step 2. There are no 1’s which are not adjacent to other 1’s so this step is discarded.

m

m

0

4

0
1

00 01

m

m

1

5

BC
A

m

m

3

7

m
m

2

6

11 10

1 1

1

1

Step 3. m3 is adjacent to m7. It forms a group of two squares and is not a part of any
group of 4 or 8 squares.

Similarly m6 is adjacent to m7. So this is second group (pair) that is not a part of any
group of 4 or 8 squares.

Now according to new definition of adjacency m4 and m6 are also adjacent and form a
pair. Moreover, this pair (group) is not a part of any group of 4 or 8 sqs.

Step 4 and 5. Discarded, because no quad or octet is possible.

Step 6. All the 1’s have already been grouped. These is an overlapping of groups because
they include a common minterm m7.

Step 7. The pair formed by m6 m7 is redundant because m6 is already covered in pair
m4 m6 and m7 in pair m3 m7. Therefore, the pair m6 m7 is discarded.

Step 8. The terms generated by the remaining two groups are ‘OR’ operated together
to obtain the expression for F as follows:

F = AC′ + BC

 ↓ ↓
From group m4 m6 From group m3 m7.
The row is corresponding Correspond to both rows
to the value of A = 1 and (A = 0 and A = 1) so A
in the two columns (00 → is omitted, and single
B′C′ and the 10 → BC′), the column (B = 1 and C = 1),
value C = 0 ⇒ C′ is common i.e., BC.
= AC′

With a little more practice, you can make yourself comfortable in minimization using K-
map technique. Then you have no used to write all the steps. You can directly minimize the
given function by drawing simply the map.

Now let us do one more example of a three variable K-map.

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 113

Example 3. Simply the following Boolean function by first expressing it in sum of
minterms.

F = A′B + BC′ + B′C′
Solution. The given Boolean expression is a function of three variables A, B and C. The

three product terms in the expression have two literals and are represented in a three
variable map by two squares each.

The two squares corresponding to the first terms A′B are formed in map from the
coincidence of A′ (A = 0, first row) and B (two last columns) to gives squares 011 and 010.

1

1

0

1

00 01
BC

A
1 1

1

11 10

B C′′ A B′ BC′

Note that when marking 1’s in the squares, it is possible to find a 1 already placed there
from a preceding term. This happens with the second therm BC′, has 1’s in the sqs. which
010 and 110, the sq. 010 is common with the first term A′B, so only one square (corresponding
to 110) is marked 1.

Similarly, the third term B′C′ corresponds to column 00 that is squares 000 and 100.
The function has a total of five minterms, as indicated by five 1’s in the map. These are

0, 2, 3, 4 and 6. So the function can be expressed in sum of minterms term:
F (A, B, C) = Σ(0, 2, 3, 4, 6)

Now, for the simplification purpose, let us redraw the map drawn above:

1

1

0

1

00 01
BC

A
1 1

1

11 10

First we combine the four adjacent squares in the first and last columns to given the
single literal term C′.

The remaining single square representing minterm 3 is combined with an adjacent
square that has already been used once. This is not only permissible but rather desirable
since the two adjacent squares give the two literal term A′B and the single sq. represent the
three literal minterm A′BC. The simplified function is therefore,

F = A′B + C′

3.2.3 Minimization in Products of Sums Form
So far, we have seen in all previous examples that the minimized function were ex-

pressed in sum of products form. With a minor modification, product of sums (POS) form can
be obtained. The process is as follows:

1. Draw map as for SOP; mark the 0 entries. The 1’s places in the squares represents
minterms of the function. The minterms not included in the function denote the
complement of the function. Thus the complement of a function is represented on
the map by the squares marked by 0’s.

2. Group 0 entries as you group 1 entries for a SOP reading, to determine the
simplified SOP expression for F′.

114 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

3. Use De Morgan’s theorem on F′ to produce the simplified expression in POS form.

Example. Given the following Boolean function:

F = A′C + A′B + AB′C + BC

Find the simplified products of sum (POS) expression.

Solution. Step 1. We draw a three variable K-map. From the given function we observe
that minterms 1, 2, 3, 5, and 7 are having the value 1 and remaining minterms i.e., 0, 4 and
6 are 0. So we mark the 0 entries.

0

0

0

1

00 01
BC

A
1

1

1

0

11 10

1

1

Step 2. Minterms 0 and 4 forms a pair, giving value = B′C′. Similarly minterms 4 and
6 forms a second pair giving value = AC′. Therefore we get F′ = AC′ + B′C′.

Step 3. Applying De Morgan’s theorem automatically converts SOP expression into POS
expression, giving the value of F

(F′)′ = [AC′ + B′C′]′
F = [(AC′)′ . (B′C′)′]
F = (A + C) . (B + C)

3.2.4 Four Variable K-Map
Let us examine a four variable truth table shown is Fig. 3.4. We used a K-map with 16

squares to represent all the minterms of input variables A, B, C and D distinctly. A four-
variable K-map is shown in Fig. 3.5.

Truth Table

Minterm Inputs Output

A B C D Y

m0 0 0 0 0 y0

m1 0 0 0 1 y1

m2 0 0 1 0 y2

m3 0 0 1 1 y3

m4 0 1 0 0 y4

m5 0 1 0 1 y5

m6 0 1 1 0 y6

m7 0 1 1 1 y7

m8 1 0 0 0 y8

m9 1 0 0 1 y9

m10 1 0 1 0 y10

m11 1 0 1 1 y11

m12 1 1 0 0 y12

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 115

Minterm Inputs Output

A B C D Y

m13 1 1 0 1 y13

m14 1 1 1 0 y14

m15 1 1 1 1 y15

Fig. 3.4

m

m

0

4

00

01

11

10

00 01

m

m

1

5

BC
AB

m

m

3

7

m

m

2

6

11 10

m

m

12

8

m

m

13

9

m

m

15

11

m

m

14

10

Fig. 3.5

The rows and column are numbered in a reflected-code sequence, with only one digit
changing value between two adjacent rows or columns.

The minimization process is similar as well have done in a three variable K-Map. How-
ever the definition of adjacency can further be extended. Considering the map to be on a
surface with the top and bottom edges, as well as sight and left edges, touching each other
of form adjacent squares.

For example m0 is adjacent to m2, m4 as well as to m8, similarly m3 is adjacent to m1,
m2, m7 as will as to m11 and so on.

Example 1. Simplify the given fraction.
F = ABCD + AB′C′D′ + AB′C + AB

Solution. Step 1. The given function is consisting of four variables A, B, C and D. We draw
a four variable K-map. The first two terms in the function have fours literals and are repeated
in a four variable map by one square each. The square corresponding to first term ABCD is
equivalent to minterm 1111. (m15). Similarly the square for second term AB′C′D′ is equivalent
to minterm 1000 (m8) the third term in the function has three literals and is represented in a
four var map by two adjacent squares. AB' corresponds to 4th row (i.e. 10) in the map and C
corresponds to last two columns (i.e. 11 and 10) in the map. The last term AB has two (A term
with only one literal is represented by 8 adjacent square in map. Finally a 1 in all 16 squares
give F = 1. It means all the minterms are having the value equal to 1 in the function). Literals
and is represented by 4 adjacent squares. Here, AB simply corresponds to 3rd row (i.e., AB = 11).

m

m

0

4

00

01

11

10

00 01

m

m

1

5

CD
AB

m

m

3

7

m

m

2

6

11 10

m

m

12

8

m

m

13

9

m

m

15

11

m

m

14

10
1 1 1 1

1 1 1
AB

ABCD AB C′AB C D′′ ′

Now, let us redraw the map first for simplification purpose.

116 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Step 2. Is discarded. (No 1’s which are not adjacent to other 1’s)

Step 3. Discard (No pairs which are not part of any larger group)

Step 4. There are three quads.

Minterms 8, 10, 12, 14 from first quad.

Minterms 12, 13, 14, 15 form second quad

and Minterms 10, 11, 14, 15 form third quad.

Step 5. Discarded. (No octetes)

Step 6. Discarded (All 1’s have been grouped.)

Step 7. Discard (No redundant term)

Step 8. The terms generated by three groups are ‘OR’ operated as follow

F = AD′ + AB + AC.

↓ ↓ ↓
From Second Third
First group group.
group

Example 2. Obtain (a) minimal sum of product (b) minimal product of sum expression
for the function given below:

F(w, x y, z) = Σ (0, 2, 3, 6, 7, 8, 10, 11, 12, 15).

Solution. The given function can also be written in product of minterm form as

F(w, x, y, z) = ∏ (1, 4, 5, 9, 13, 14).

Squares with 1’s are grouped to obtain minimal sum of product; square with 0’s are
grouped to obtain minimal product of sum, as shown.

00

01

11

10

00 01
YZ

WX 11 10

1

1 1

1

1 1

1

1 1

1

(a) We draw a four variable map using minterms whose values in the function are equal to 1.

– Minterm 8 and 12. From a pair.

– Minterms 0, 2, 8 and 10 form I quad.

– Minterms 3, 7, 11, 15 form II quad.

– Minterms 2, 3, 6, 7 form III quad.

Therefore, F = x'z' + yz + w'y + wy'z'

↓ ↓ ↓ ↓
Due to II quad III quad Due to pair
I quad.

(b) We draw a four variable map using minterms whose values in the function are equal
to zero. These minterms are 1, 4, 5, 9, 13 and 14.

00

01

11

10

00 01
CD

AB 11 10

1 1 1 1

1 1 1

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 117

00

01

11

10

00 01
YZ

WX 11 10

0

0

0

0

0

0

– Minterm 14 cannot be combined with any other square in the map 4 fours a group
with single squares.

– Minterms 4 and 5 form a pair.

– Minterms 1, 5, 9 and 13 form a quad.

Therefore, F' = wxyz' + w'xy' + y'z

Applying De Morgan's theorem

(F')' = [wxyz′ + w′xy′ + y′z]′
F = (wxyz')'. (w'xy')'. (y'z)'

F = (w' + x'y' + z). (w + x' + y). (y + z').

3.2.5 Prime and Essential Implicants
So far we have seen a method for drawing and minimising Karnaugh maps in such a way

that unnecessary (redundant) groupings can be avoided. Now let us establish some important
definitions that will be used to a systematic procedure for combining squares in the process of
K-map minimization. To do this, consider a function defined as F (A, B, C, D) = Σ(0, 1, 2, 3,
5, 7, 8, 9, 10, 13, 15). Now we will analyze the grouping shown in the 4 variable map in Fig. 3.6.

m

m

0

4

00

01

11

10

00 01
m

m

1

5

CD
AB

m

m

3

7

m

m

2

6

11 10

m

m

12

8

m

m

13

9

m

m

15

11

m

m

14

10

1

1 1 1 1

1

1 1

1 1 1

Fig. 3.6

Here, we see that all realistic groupings are shown. Note further that each group is
sufficiently large that is can not be completely covered by any other simple grouping. Each
of these five groupings is defined as a Prime implicant.

I group → covering minterms → 0, 2, 8, and 10, → B′D′
II group → covering minterms → 0, 1, 2, and 3 → A′B′
III group → covering minterms → 1, 5, 9, and 13 → C′D′
IV group → covering minterms → 1, 3, 5 and 7 → A′D′
V group → covering minterms → 5, 7, 13 and 15 → BD

IV group → covering minterms → 0, 1, 8, 9 → B′C′

118 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Thus, ‘a prime implicant is a product term (or minterm) obtained by combining
the maximum possible number of adjacent squares in the map.

As we examine the set of prime implicates that cover this map, it becomes obvious that
some of the entries can be grouped in only one way. (Single way groupings). For example
there is only one way to group m10 with 4 adjacent squares. (I group only). Similarly there
is only one way to group m15 with the adjacent square (V group only). The resultant terms
from these groupings are defined as essential prime implicants.

Thus, ‘if a minterm in a square is covered by only one prime implicant, the
prime implicant is said to be essential’. The two essential prime implicant i.e., B′D′ and
BD cover 8 minterms. The remaining three viz m1, m3 and m9 must be considered next.

The prime implicant table shows that m3 can be covered either with A'B' or with A′D.
m9 can be covered either with C'D or with B′C′.

m1 can be covered with any of form prime implicates A'B', A'D, B'C' or C'D.

Now the simplified expression is obtained form the sum of two essentials prime impli-
cates and two prime implicant that cover minterms. m1, m3, and m9. It means there are four
possible ways to write the simplified expression.

(a) BD + B'D' + A'B' + C'D

(b) BD + B'D' + A'B' + B'C'

(c) BD + B'D' + A'D + C'D

(d) BD + B'D' + A'D + B'C'

The simplified expression is thus obtained from the logical sum of all the essential prime
implicants plus the prime implicants that may be needed to cover any remaining minterms
not covered by simplified prime implicants.

3.2.6 Don’t care Map Entries
Many times in digital system design,

some input combinations must be consid-
ered as cases that “Just don't happen”, and
there are cases when the occurrence of par-
ticular combinations will have no effect on
the system, and if those combinations do
occur, “you don’t care”. For example, con-
sider the case where the outputs of a 4-bit
binary counter; which happens to home a
possible range from 0000 to 1111, is to be
converted to a decimal display having the
range of 0, 1, 2,, 9. The converter might
be a digital system having binary 4-bit in-
puts and decimal upto as shown Fig. 3.7. In
this particular case, the input combinations
1001, 1010, 1011, 1100, 1101, 1110, 1111 are
to be considered by combinations that just
can not be accepted by the digital system if
it is function properly.

Digital
system

converting
4 bit binary
number to
a Decimal
number

0

1

2

3

4

5

6

7

8

9

0000
0001

1001
1010
1011
1100
1101
1110
1111

0
1
2
3

9
10
11
12
13
14
15

Fig. 3.7

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 119

Therefore, when this digital system is being designed, these minterms in the map are
treated in a special way. That is a d or a × (cross) is entered into each square to signify “don't
care” MIN/MAX terms.

Reading a map, or grouping a map with don’t care entries is a simple process.

Group the don’t care (d or ×) with a 1 grouping if and only if this grouping will result
in greater, simplification; otherwise treat it as if it were a 0 entry.

Example. Simplify the following Boolean function.

F (A, B, C, D) = Σ (0, 1, 2, 10, 11, 14)

d (5, 8, 9)

Solution. The K-map for the given function is shown in Fig. 3.8 with entries X (don’t
care) in squares corresponding to combinations 5, 8 and 9.

00

01

11

10

00 01
CD

AB 11 10

1

X 1 1

1 1 1

X

X

Fig. 3.8

As discussed above, the 1’s and d’s (Xs) are combined in order to enclose the maximum
number of adjacent squares with 1. As shown in K-map in Fig. 3.8, by combining 1’s and d’s
(Xs), three quads can be obtained. The X in square 5 is left free since it doss not contribute
in increasing the size of any group. Therefore, the

I Quad covers minterms 0, 2, 10 and d8

II Quad covers minterms 10, 11 and d8, d9.

III Quad covers minterms 0, 1 and d8, d9.

A pair covers minterms 10 and 14.

So, F = B'D' + AB' + B'C' + ACD'
Due II III Due
to I quad Quad to

quad. Pair.

3.2.7 Five Variable K-Map
The Karnaugh map becomes three dimensional when solving logic problems with more

than four variables. A three dimensional K-map will be used in this section.

0

4

12

8

00

01

11

10

00 01

1

5

13

9

DE
BC 11 10

3

7

15

11

2

6

14

10

A = 0

16

20

28

24

00

01

11

10

00 01

17

21

29

25

DE
BC 11 10

19

23

31

27

18

22

30

26

A = 1

120 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The 5 variable M-map contains 25 = 32 squares. Instead of representing a single 32-
square map, two 16-square K-maps are generally used. If the variable are A, B, C, D and E,
the two identical 16-square maps contain B, C, D and E variable with one 16-sq. map for A
= 1 and other 16-square map for A = 0 i.e., (�). This is shown in Fig. 3.9.

0

4

12

8

00

01

11

10

00
01

1

5

13

9

DEBC

11
103

7

15

11

2

6

14

10

A = 0

16

20

28

24

00

01

11

10

00
01

17

21

29

25

DEBC

11
10

19

23

31

27

18

22

30

26

A = 1

Fig. 3.9

The minimization procedure described so far with respect to functions of two, three or
four variables can be extended to the case of five variables.

It is noted that in order to identify the adjacent grouping in the 5-variable maps, we must
imagine that the two maps are superimposed on one another as shown in Fig. 3.9. Every
square in one map is adjacent to the corresponding square in the other map, because only
one variable, changes between such corresponding squares. Thus, rows and columns for one
map is adjacent to the corresponding row and column on the other map and same rules are
used for adjancencies within one 16 square map. This is illustrate in Fig. 3.10.

DE
BC

Adjacent
Rows

Adjacent
Rows
Adjacent Groups

Adjacent cells

Adjacent columns

DE
BC A =1A =0

Fig. 3.10

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 121

Example. Simplify the given function.

F(A, B, C, D, E) = Σ (0, 4, 7, 8, 9, 10, 11, 16, 24, 25, 26, 27, 29, 31)

Solution. We make two 4-variable maps and fill minterms 0-15 in map corresponding
to A = 0 and 16 to 31 corresponding to A = 1

1

1

1

00

01

11

10

00 01

1

DE
BC 11 10

1

1 1

Subcube
4

Subcube
5

Subcube
3

Subcube
1

1

1

00

01

11

10

00 01

1

1

DE
BC 11 10

1

1 1

Subcube
2

A = 0 A = 1

We have 5-subcubes after grouping adjacent squares.

Subcube 1 is an octate which gives BC'

Subcube 2 is a quad which gives ABE (In the map corresponding to A = 1)

Subcube 3 is a pair which gives B'C'D'E'

Subcube 4 is a pair which gives A'B'D'E' (In the map corresponding to A = 0)

Subcube 5 is a single squares which gives A'B'CDE (In the map corresponding to A = 0).

Therefore, F (A, B, C, D, E) = BC' + ABE + B'C'D'B' + A'B'D'E' + A'B'CDE

3.2.8 Six Variable K-Map
A six variable K-map contains 26 = 64 squares. These square are divided into four identical

16-square maps as shown in Fig. 3.11. It the variables are A, B, C, D, E and F, then each 16 square
map contains C, D, E, and F as variables along with anyone of 4 combinations of A and B.

0

4

12

8

00

01

11

10

00 01

1

5

13

9

EF
CD 11 10

3

7

15

11

2

6

14

10

16

20

28

24

00

01

11

10

00 01

17

21

29

25

EF
CD 11 10

19

23

31

27

18

22

30

26

AB = 00 AB = 01

32

36

44

40

00

01

11

10

00 01

33

37

45

41

EF
CD 11 10

35

39

47

43

34

38

46

42

48

52

60

56

00

01

11

10

00 01

49

53

61

57

EF
CD 11 10

51

55

63

59

50

54

62

58

AB = 10 AB = 11

Fig. 3.11

122 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

In order to identify the adjacent groupings in the 6-variable maps, we must imagine that
the 4 maps are superimposed on one another. Fig. 3.12 shows different possible adjacent squares:

00

01

11

10

00 01
EF

CD 11 10 00
EF

CD

EF
CD

EF
CD

AB = 10 AB = 11

Adjaent
cells
(B C D E F)�� � � �

Adjacent
Queds
(C E)�

Adjacent
Octates
(B E)�

Adjacent columns
(AEF)�

Adjacent Rows
(ACD)�

AB = 00 AB = 01

Fig. 3.12

Example. Simplify the given Boolean function.

F(A, B, C, D, E, F) = Σ (0, 4, 8, 12, 26, 27, 30, 31, 32, 36, 40, 44, 62, 63)

Solution. We make four 4-varibale maps and fill the mentions 0-15 in map correspond-
ing to AB = 00, 16-31 corresponding to AB = 01, 32 – 47 corresponding to AB = 10 and 48 to
63 corresponding to A B = 11.

1

1

1

1

00

01

11

10

00 01
EF

CD 11 10

00

01

11

10

00 01
EF

CD 11 10

AB = 00 AB = 01

1

1

1

1

00

01

11

10

00 01
EF

CD 11 10

00

01

11

10

00 01
EF

CD 11 10

1

1

AB = 10 AB = 11

1

1

1

1

1

1

Subcube
1 of
Two
Quads

Subcube 3 of
two pairs

Subcube 2
of one quad

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 123

We have 3-subcubes after grouping adjacent square.

1. Subcubes 1 contains two quads gives B'E'F'

2. subcube 2 is form of one quad gives A'BCE

3. subcube 3 is form of two pairs gives BCDE

Therefore, F(A, B, C, D, E, F) = B'EF' + A'BCE + BCDE.

Maps with seven or more variables needs too many squares and are impractical to use.
The alternative is to employ computer programs specifically written to facilitate the simpli-
fication of Boolean functions with a large number of variables.

3.2.9 Multi Output Minimization
Finding the optimal cover for a system of output expressions all of which are a function

of the some variables is somewhat tedious task. This task is basically one of identifying all
possible prime implicants (PIs) that cover each implicated minterm in each O/P expression,
then carrying out a search for the minimal cost cover by using ‘shared’ terms.

Suppose you were given the following system of expressions and asked to find the
optimal cover for the complete system, implying that you must find how to optimally share
terms between the expressions.

F1 (A, B, C) = Σ (0, 2, 3, 5, 6)

F2 (A, B, C) = Σ (1, 2, 3, 4, 7)

F3 (A, B, C) = Σ (2, 3, 4, 5, 6)

we first generate the maps for three expressions as shown in Fig. 3.13.

10

1

00 01
BC

A
1 1

1

11 10

F1

1

0

1

00 01
BC

A
1 1

11 10

F2

1

1

0

1

00 01
BC

A
1 1

1

11 10

F3

11 1

Fig. 3.13

Then we make up an implicant table as shown in Fig. 3.14, showing how each minterm
can be covered:

Minterm F1 F2 F3

m0 A'B'C'/ A'C' – –

m1 – A'B'C'/ A'C' –

m2 A'BC'/ A'B /A'C/BC' A'BC'/ A'B A'BC'/ A'B' /B'C'

m3 A'BC/ A'B A'BC/ A'B /A'C/BC A'BC/ A'B

m4 – AB'C' AB'C'

m5 AB'C – AB'C / AB'

m6 ABC' / BC' – ABC' / BC' /AC'

m7 ABC/ BC –
Fig. 3.14 Implicant table

124 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

We first scan the table for rows with only a single entry. These are related to essential
implicants (m0, m1, m7). We take the largest grouping and update the table (In table by
making circle).

Next scan the rows for those which have two entries, selecting the functions that have
only a single way grouping option (m4 under F2 and m5 and m6 under F1). It means have
to find the common term. We take the common term and update the table (In table by making
ovals).

Finally, scan the rows for those rows which have three entries, selecting the functions
that have only a single way grouping option or we find the common term. We take the
common term and update the table (In table by making rectangular boxes).

Now using implicant table, the three functions can be written as:

F1 = �
 � � � � � � � ��
 � �
′ ′ ′ ′ ′ ′
= �
 � � � � �
 � ��
′ ′ ′ ′ ′

F2 = �
 � � � � � � � ��
 � �
′ ′ ′ ′ ′

= �
 � � � � ��
 � �
′ ′ ′ ′

F3 = � � � � � � ��
′ ′ ′ ′ + AB′C + BC′
= � � � �
 � ��
 � ��
′ ′ ′ ′ ′

We see; F3 is totally generated from shared terms from F1 and F2 with considerable
saving over a combinational function by function reduction.

In summary, we can say that many times multiple outputs are derived from the same
input variables. In this case, we simplify and draw logic diagram of each function separately.
Sometimes, the simplified output functions may have common terms. The common term used
by one O/P function can be shared by other output functions. This sharing of common terms
reduces the total number of gates.

3.3 MINIMIZATION USING QUINE-McCLUSKEY (TABULAR) METHOD
The K-map method is suitable for simplification of Boolean functions up to 5 or 6

variables. As the number of variables increases beyond this, the visualization of adjacent
squares is difficult as the geometry is more involved.

The ‘Quine-McCluskey’ or ‘Tabular’ method is employed in such cases. This is a system-
atic step by step procedure for minimizing a Boolean expression in standard form.

Procedure for Finding the Minimal Expression
1. Arrange all minterms in groups, such that all terms in the same group have same

number of 1’s in their binary representation. Start with the least number of 1’s and
continue with grouping of increasing number of 1’s, the number of 1’s in each term
is called the index of that term i.e., all the minterms of same index are placed in
a same group. The lowest value of index is zero. Separate each group by a thick
line. This constitutes the I stage.

2. Compare every term of the lowest index (say i) group with each term in the
successive group of index (say, i + 1). If two minterms differ in only one variable,
that variable should be removed and a dash (–) is placed at the position, thus a new
term with one less literal is formed. If such a situation occurs, a check mark (✔) is

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 125

placed next to both minterms. After all pairs of terms with indices i and (i + 1) have
been considered, a thick line is drawn under the last terms.
When the above process has been repeated for all the groups of I stage, one stage
of elimination have been completed. This constitutes the II stage.

3. The III stage of elimination should be repeated of the newly formed groups of
second stage. In this stage, two terms can be compared only when they have dashes
in same positions.
The process continues to next higher stages until no further comparisons are
possible. (i.e., no further elimination of literals).

4. All terms which remain unchecked (No ✔ sign) during the process are considered
to be prime implicants (PIs). Thus, a set of all PIs of the function is obtained.

5. From the set of all prime implicates, a set of essential prime implicants (EPIs) must
be determined by preparing prime implicant chart as follow.
(a) The PIs should be represented in rows and each minterm of the function in a column.
(b) Crosses should be placed in each row corresponding to minterms that makes

the PIs.
(c) A complete PIs chart should be inspected for columns containing only a single

cross. PIs that cover minterms with a single cross in their column are called EPIs.
6. The minterms which are not covered by the EPIs are taken into consideration and

a minimum cover is obtained form the remaining PIs.
Now to clarify the above procedure, lets do an example step by step.
Example 1. Simplify the given function using tabular method.

F (A, B, C, D) = ∑ (0, 2, 3, 6, 7, 8, 10, 12, 13)
Solution. 1. The minterms of the function are represened in binary form. The binary

represented are grouped into a number of sections interms of the number of 1’s index as
shown in Table of Fig. 3.15.

Minterms Binary No. Minterms Index Binary
ABCD of 1's Group ABCD

m0 0 0 0 0 0 m0 0 0 0 0 0 ✔

m2 0 0 1 0 1 m2 0 0 1 0 ✔

m3 0 0 1 1 2 m8
1 1 0 0 0 ✔

m6 0 1 1 0 2 m3 0 0 1 1 ✔

m7 0 1 1 1 3 m6 2
0 1 1 0 ✔

m8 1 0 0 0 1 m10 1 0 1 0 ✔

m10 1 0 1 0 2 m12 1 1 0 0 ✔

m12 1 1 0 0 2 m7 0 1 1 1 ✔

m13 1 1 0 1 3 m13
3 1 1 0 1 ✔

Fig. 3.15

2. Compare each binary term with every term in the adjacent next higher category.
If they differ only by one position put a check mark and copy the term into the next
column with (–) in the place where the variable is unmatched, which is shown in
next Table of Fig. 3.16.

126 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Minterm Binary

Group A B C D

0, 2 0 0 – 0 ✔

0, 8 – 0 0 0 ✔

2, 3 0 0 1 – ✔

2, 6 0 – 1 0 ✔

2, 10 – 0 1 0 ✔

8, 10 1 0 – 0 ✔

8, 12 1 – 0 0 PI

3, 7 0 – 1 1 ✔

6, 7 0 1 1 – ✔

12, 13 1 1 0 – PI

Fig. 3.16

Minterm Binary

Group A B C D

0, 2, 8, 10 – 0 – 0 PI

0, 8, 2, 10 – 0 – 0 PI eliminated

2, 3, 6, 7 0 – 1 – PI

2, 6, 3, 7 0 – 1 – PI eliminated.

Fig. 3.17

3. Apply same process to the resultant column of Table of Fig. 3.16 and continue until
no further elimination of literals. This is shown in Table of Fig. 3.17 above.

4. All terms which remain unchecked are the PIs. However note that the minterms
combination (0, 2) and (8, 10) form the same combination (0, 2, 8, 10) as the
combination (0, 8) and (2. 10). The order in which these combinations are placed
does not prove any effect. Moreover, as we know that x + x = x, thus, we can
eliminate one of these combinations.

The same occur with combination (2, 3) and (6, 7).

5. Now we prepare a PI chart to determine EPIs as follows shown in Table of Fig. 3.18.

Minterms

Prime Implicants 0 2 3 6 7 8 10 12 13

(8, 12) × ×

(12, 13) * × ×

(0, 2, 8, 10) * × × × ×

(2, 3, 6, 7) * × × × ×

✔ ✔ ✔ ✔ ✔ ✔

Fig. 3.18

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 127

(a) All the PIs are represented in rows and each minterm of the function in a
column.

(b) Crosses are placed in each row to show the composition of minterms that
make PIs.

(c) The column that contains just a single cross, the PI corresponding to the row
in which the cross appear is essential. Prime implicant. A tick mark is part
against each column which has only one cross mark. A star (*) mark is placed
against each. EPI.

6. All the minterms have been covered by EPIs.

Finally, the sum of all the EPIs gives the function in its minimal SOP form

EPIs. Binary representation Variable Representation

A B C D

12, 13 1 1 0 – ABC'

0, 2, 8, 10 – 0 – 0 B'D'

2, 3, 6, 7 0 – 1 – A'C

Therefore, F = ABC' + B'D' + A'C.

If don't care conditions are given, they are also used to find the prime implicating, but
it is not compulsory to include them in the final simplified expression.

Example 2. Simplify the given function using tabular method.

F(A, B, C, D) = ∑ (0, 2, 3, 6,7)

d (5, 8, 10, 11, 15)

Solution. 1. Step 1 is shown in Table of Fig. 3.19. The don’t care minterms are also
included.

Minterms Binary No. Minterms Index Binary
A B C D of 1’s Group ABCD

m0 0 0 0 0 0 m0 0 0 0 0 0 ✔

m2 0 0 1 0 1 m2 0 0 1 0 ✔

m3 0 0 1 1 2 m8 1 1 0 0 0 ✔

m5 0 1 0 1 2 m3 0 0 1 1 ✔

m6 0 1 1 0 2 m5 2 0 1 0 1 ✔

m7 0 1 1 1 3 m6 0 1 1 0 ✔

m8 1 0 0 0 1 m10 1 0 1 0✔

m10 1 0 1 0 2 m7 3 0 1 1 1 ✔

m11 1 0 1 1 3 m11 1 0 1 1 ✔

m15 1 1 1 1 4 m15 4 1 1 1 1 ✔

Fig. 3.19

2. Step 2 is shown in Table of Fig. 3.20.

3. Step 3 is shown in Table of Fig. 3.21.

128 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Minterm Binary

Group A B C D

0, 2 0 0 – 0 ✔

0, 8 – 0 0 0 ✔

2, 3 0 0 1 – ✔

2, 6 0 – 1 0 ✔

2, 10 – 0 1 0 ✔

8, 10 1 0 – 0 ✔

3, 7 0 – 1 1 ✔

3, 11 – 0 1 1 ✔

5, 7 0 1 – 1 PI

6, 7 0 1 1 – ✔

10, 11 1 0 1 – ✔

7, 15 – 1 1 1 ✔

11, 15 1 – 1 1 ✔

Fig. 3.20

Minterm Binary

Group A B C D

0, 2, 8, 10 – 0 – 0 PI

0, 8, 2, 10 – 0 – 0 PI Eliminated

2, 3, 6, 7 0 – 1 – PI

2, 3 10, 11 – 0 1 – PI

2, 6, 3, 7 0 – 1 – PI Eliminated

2, 10, 3, 11 – 0 1 – PI Eliminated

3, 7, 11, 15 – – 1 1 PI

3, 11, 7, 15 – – 1 1 PI Eliminated

Fig. 3.21

4. All the terms which remain unchecked are PIs. Moreover, one of two same com-
binations is eliminated.

5. Step 5 is to prepare a PI chart to determine EPIs as shown in Table of Fig. 3.22.

Note, however, that don’t care minterms will not be listed as column headings in
the chart as they do not have to be covered by the minimal (simplified) expression.

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 129

Prime Implicants Minterms

0 2 3 6 7

(5, 7) ×

(0, 2, 8, 10) * × ×

(2, 3, 6, 7) * × × × ×

(2, 3, 10, 11) × ×

(3, 7, 11, 15) × ×

✔ ✔

Fig. 3.22

6. All the minterms have been covered by EPIs.

Therefore F (A, B, C, D) = B'D' + A'C

Example 3. Simplify the given function using tabular method:

F (A, B, C, D, E, F, G) = Σ (20, 28, 38, 39, 52, 60, 102, 103, 127)

Solution. Step 1 is shown in Table of Fig. 3.23.

Minterms Binary No. Minterms Index Binary
ABCDEFG of 1’s Group ABCDEFG

m20 0 0 1 0 1 0 0 2 m20 2 0 0 1 0 1 0 0 ✔

m28 0 0 1 1 1 0 0 3 m28 0 0 1 1 1 0 0 ✔

m38 0 1 0 0 1 1 0 3 m38 3 0 1 0 0 1 1 0 ✔

m39 0 1 0 0 1 1 1 4 m52 0 1 1 0 1 0 0 ✔

m52 0 1 1 0 1 0 0 3 m39 4 0 1 0 0 1 1 1 ✔

m60 0 1 1 1 1 0 0 4 m60 0 1 1 1 1 0 0 ✔

m102 1 1 0 0 1 1 0 4 m102 1 1 0 0 1 1 0 ✔

m103 1 1 0 0 1 1 1 5 m103 5 1 1 0 0 1 1 1 ✔

m127 11 1 1 1 1 1 7 m127 7 1 1 1 1 1 1 1 PI

Fig. 3.23

2. Step 2 is shown in Table (Fig. 3.24).

3. Step 3 is shown in Table (Fig. 3.25).

Minterms Binary

Group A B C D E F G
20, 28 0 0 1 – 1 0 0 ✔

20, 52 0 – 1 0 1 0 0 ✔

28, 60 0 – 1 1 1 0 0 ✔

38, 39 0 1 0 0 1 1 – ✔

38, 102 – 1 0 0 1 1 0 ✔

52, 60 0 1 1 – 1 0 0 ✔

39, 103 – 1 0 0 1 1 1 ✔

102, 103 1 1 0 0 1 1 – ✔

Fig. 3.24

130 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Mintesms Binary

Group A B C D E F G

20, 28, 52, 60 0 – 1 – 1 0 0 PI

20, 52, 28, 60 0 – 1 – 1 0 0 PI Eliminated

38, 39 102, 103 – 1 0 0 1 1 – PI

38, 102, 39, 103 – 1 0 0 1 1 – PI Eliminated

Fig. 3.25

4. All the terms which remain unchecked are PIs. Moreover one of two same com-
binations is eliminated.

5. PI chart to determine EPIs is shown in Table Fig. 3.26.

Prime Implicants Minterms

20 28 38 39 52 60 102 103 127

127 * ×

(20, 28, 52, 60) * × × × ×

(38, 39, 102, 103) * × × × ×

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Fig. 3.26

6. All the minterms have been covered by EPIs.

Therefore, F (A, B, C, D, E, F, G) = ABCDEFG + A'CEF'G' + BC'D'EF

3.4 EXERCISE
1. Using Boolean algebra simplify each of the following logic expressions as much as

possible:

(a) Z = A(A + AB) (A + ABC) (A + ABCD)

(b) C = �� � � �� �′ + ′ ′	

2. Draw the simplest possible logic diagram that implements the output of the logic
diagram given below.

A
B

C

H

3. Write the logic expression and simplify it as much as possible and draw a logic
diagram that implements the simplified expression.

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 131

A

B
C

X

D

4. Obtain the simplified expression in s-of-p for the following Boolean functions:

(a) �� � � � � ��+ ′ ′ ′ + ′ ′

(b) ABD + A′C′D′ + A′B + ACD + AB′D′

(c) � � � �� � � � ��′ + ′ ′ + ′ + ′� 	

(d) � �� � �� � 	 � � � � 	= Σ � � �

(e) � ��� ��
� �	 � ��� ��� ��� ��	Σ

5. Use a K-map to simplify each of the following logic expressions as much as possible:

(i) � � �� � � � � ��′ ′

(ii) � � � � � � � �� � �� � � � � � � ���′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
(iii) � � � �
� � ��
 � � � �
 � � ��
 � � � �
 � � ��
 � � ��
�′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
(iv) � � � � � � � �� � ��� � �� � � � ��′ ′ ′ ′ ′ ′

6. Simplify the following logic expressions using K-maps and tabular method.

(a) F(A, B, C) = A′C + B′C+AB′C′
(b) G(A, B, C, D) = B′CD + CD′ + A′B′C′D + A′B′C

7. Simplify the Boolean function F(ABCDE) = Σ(0, 1, 4, 5, 16, 17, 21, 25, 29)

8. Simplify the following Boolean expressions using K-maps and Tabular method.

(i) BDE + B′C′D + CDE + ABCE + ABC + BCDE

(ii) ABCE + ABCD + BDE + BCD + CDE + BDE

(iii) F(ABCDEF) = Σ(6, 9, 13, 18, 19, 27, 29, 41, 45, 57, 61)

9. Draw Karnaugh maps for the following expressions:

F = � �� �
 � � �� �
 � ��� �
 � ����
′ ′ ′ ′ ′ ′
� � � ���
 � ����
 � � ���
 � ����
 � ��� �
′ ′ ′ ′ ′ ′
� � � �
 � � ���
 � � � �
 � � � �� �
 � � � �
 ��� � � � � � � � � � �′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

� � �
 � � � �� �
�� � � ��
��′ ′ ′ ′ ′ ′ ′� �

10. Simplify the following logic expressions using karnaugh maps. Draw logic diagrams
for them using only (a) NAND, (b) NOR gates, assuming inputs A, B, C, and D only
are available.

� � � �
 � � ���
 � � � �
 � � � �� �
 � � � �
 ��′ ′ ′ ′ ′ ′ ′ ′� � � � � � � � � � �

+ ′ ′ ′ ′ ′� �� �
�� � � ���
��

132 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

� � � �
 � � � ��
 � � � �
 � � � ���
 � � � �
�� � ��� �
��′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′� � � � � � � � � � �

� � � �
 � � ���
 � � � �
 � � � �� �
 �� � �
�� � ����
 ��′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′� � � � � � � � � � �

+ ′ ′ ′ ′ ′ ′ ′ ′� �� �
�� � ��� �
�� � ��� �
 �� � �� �
��

� � ����
 �� � � �� �
 �� � ��� �
 �� � ����
�� � ����
��′ ′ ′ ′ ′ ′ ′ ′ ′
11. The institute’s pool room has four pool tables lined up in a row. Although each table

is far enough from the walls of the room, students have found that the tables are
too close together for best play. The experts are willing to wait until they can
reserve enough adjacent tables so that one game can proceed unencombered by
nearby tables. A light board visible outside the pool room shows vacant tables. The
manager has developed a digital circuit that will show an additional light whenever
the experts’ desired conditions arise. Give a logic equation for the assertion of the
new light signal. Simplify the equation using a K-Map.

12. Simlify the Boolean functions using tabular method and verify result with K-map.

(a) � �� � � �� � � 	 � � � � � � � � � � � 	= Σ � � � � � � � � �� ��

(b) � �� � � �� � � 	 � � � � � � 	= Σ � � �� �� ��

(c) � �� �
 �� � � 	 � � � � 	= Σ � � � ��

(d) � �� �
 �� � � 	 � � � � 	= Σ � �� �� ��

(e) � � � �� � �	 � � � � 	= Σ � �� �� ��

13. Simplify the Boolean function F using the don’t care conditions d, in (I) SOP and
(II) POS:

� � � � � � �
� � � �
′ ′ ′ ′ � = ′ ′ ′ ′� �
 � � �
� � �� �

� � �� � � � � ��� � � � �′ ′ + ′ ′ + + ′ ′ +	 � 	 � � � � � �� ���= ′ ′ + ′ +� 	

� � �
� � �
� � � �
 ��′ ′ ′ ′ ′ � = ′ ′ ′ ′ ′�� � � � � � �� �

14. Use a Karnaugh map to simplify each of the following logic expressions as much
as possible.

(a) � � � �
� � ��
 � � � �
� � ��
 � � ��
�′ ′ ′ ′ ′ ′ ′ ′ ′

Solution. F = ABD + A′B′D + B′C′

(b) � � �
 � �
 � ��
 � � �′ ′ ′ ′ ′

Solution. � � �� � � � � �
�� !���� � � � � �
′ ′ ′ ′ ′ ′

(c) � � �
� �
� � � �
 � � � �
′ ′ ′ ′ ′ ′ ′ ′

Solution. � � �
� �
� � � �
 � � � �
′ ′ ′ ′ ′ ′ ′ ′

(d) � � � � � �
 	 �� � � �
	 �� � � �
 	� ′ ′ ′

Solution. � � � � �
′

15. Use a Karnaugh map to simplify each of the following logic expressions as much
as possible.

(a) � � ���
 	 ��
	 ���
	′ ′ ′ ′ ′�

BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 133

(b) " � � � � � � � � � � � � � � � �+ ′ ′ + ′ + ′

16. Using Boolean Algebra simplify

(a) �� � �	 �� �
	 (b) � � ��
 � ��
� � ��
���

(c) �� � ��
 �+ (d) �� � �	 ��� � ��
	

(e) �� � �� � �	
 � ��

17. Use a karnaugh map to simplify each function to a minimum sum-of-products form:

(a) � � ��
 � ��
 � ��
 (b) � � �
 �� � � �� �
	�

(c) � � ��� � ��� � ���

18. A B C F1 A B C F2

0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 1

0 1 0 0 0 1 0 1

0 1 1 0 0 1 1 1

1 0 0 0 1 0 0 0

1 0 1 1 1 0 1 1

1 1 0 0 1 1 0 1

1 1 1 1 1 1 1 0

Transfer the input-output specifications for F1 and F2 given above to 3 variable
Karnaugh maps.

19. Using a Karnagh map simplify the following equations

(a) � � �� � �
 � �
 � �� � �
 � ��
 � ��

(b) � � ��
 � �
� � ��
 � �
� � ��
 � ��� � ��
�

(c) � � � ��
 � �
� � � �
 � �
�	 � �
��

(d) � � ��
 � �
� � ��� � ��
� � �
� � ��
�

20. Simplify the following using Boolean Algebra

(a) � � � � � �= +� � �

(b) � � � � �= + +� 	 � � 	

(c) � � � � � � � � � �= + + +� � � � �

(d) � � � � � � � � �= + + + +� 	�� 	�� �� 	 �

21. Consider the function

� � � � � � � � � � � � � �= = + +� � � � 	 � � � 	� �� � 	

(a) Draw a schematic diagram for a circuit which would implement this function.

22. Simplify the Boolean function by tabular method

134 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

F(A, B, C, D, E) = Σ(0, 1, 4, 5, 16, 17, 21, 25, 29)

23. Simplify the following function in (a) s–o-p

and (b) p–o–s

F(A, B, C, D) = ∏(3, 4, 6, 7, 11, 12, 13, 14, 15)

24. Simplify the Boolean function using tabular method.

F(A, B, C, D, E) = Σ(0, 1, 4, 5, 16, 17, 21, 25, 29, 30)

25. Simplify the Boolean function using tabular method

F(A, B, C, D, E, F) = Σ(6, 9, 13, 18, 19, 27, 29, 41, 45, 57, 61, 63)

4.0 INTRODUCTION
Combinational logic circuits are circuits in which the output at any time depends upon

the combination of input signals present at that instant only, and does not depend on any past
conditions.

The block diagram of a combinational circuit with m inputs and n outputs is shown in
Fig. 4.0.

Combinational
Circuit

Inputs OutputsX1
X2
X3

Xm

Y1
Y2
Y3

Yn

(n 2)�� m

Fig. 4.0 Block diagram of combinational logic circuit

In particular, the output of particular circuit does not depend upon any past inputs or
outputs i.e. the output signals of combinational circuits are not fedback to the input of the
circuit. Moreover, in a combinational circuit, for a change in the input, the output appears
immediately, except for the propagation delay through circuit gates.

The combinational circuit block can be considered as a network of logic gates that accept
signals from inputs and generate signals to outputs. For m input variables, there are 2m

possible combinations of binary input values. Each input combination to the combinational
circuit exhibits a distinct (unique) output. Thus a combinational circuit can be discribed by n
boolean functions, one for each input combination, in terms of m input variables with n is
always less than or equal to 2m. [n < 2m].

Thus, a combinational circuit performs a specific information processing operation which
is specified by Boolean functions.

n < 2m represent the condition, that in a particular application there are some unused
input combinations. For example, when we are using NBCD codes, the six combinations
(1010, 1011, 1100, 1101, 1110 and 1111) are never used. So with four input variables (m = 4)
we are using only 10 i/p combinations i.e., 10 O/ps instead of 24 = 16.

135

C
H

A
P

T
E

R 4
COMBINATIONAL LOGIC

136 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The digital systems perform a member of information processing tasks. The basic
arithmatic operations used by digital computers and calculators are implemented by combi-
national circuits using logic gets. We proceed with the implementation of these basic functions
by first looking the simple design procedure.

Combinational circuit Design Procedure
It involves following steps :

Step 1 : From the word description of the problem, identify the inputs and outputs and
draw a block diagram.

Step 2 : Make a truth table based on problem statement which completely describes the
operations of circuit for different combinations of inputs.

Step 3 : Simplified output functions are obtained by algebric manipulation, k-map method
or tabular method.

Step 4 : Implement the simplified expression using logic gates.
To explain the procedure, let us take an example that we have already been used in

chapter 2.
Example: A TV is connected through three switches. The TV becomes ‘on’ when atleast

two switches are in ‘ON’ position; In all other conditions, TV is ‘OFF’.
Solution. Step I : The TV is connected with 3 switches; thus there are three inputs to

TV, represented by variables say A, B and C. The o/p of TV is represented by variable say, F.
The block diagram is shown in Fig. 4.1 :

A
B
C

Combinational
CircuitInputs F (output)

Fig. 4.1

Step 2. Truth Tables

TV switches ← INPUTS OUTPUTS

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

0 → switch off

1 → switch on

It means for the input combinations in which there are two or more 1's, the output F
= 1 (TV is ON) and for rest combinations, output F = 0 (TV is OFF).

COMBINATIONAL LOGIC 137

Step 3 : In general, in simplifying boolean functions upto four
variables, the best method is K-map technique. Thus, using a 3
variable K-map, we can simplify the function obtained in step II.

We get F = AB + AC + BC

We can observe that if the velue of any two variables is equal to 1, the output is equal to 1.
Step IV. For implementation we need three ‘AND’ gates and one ‘OR’ gate as shown in

Fig. 4.2.
A
B

C
F = AB + AC + BC

AB

AC

BC

Fig. 4.2

4.1 ARITHMATIC CIRCUITS
The logic circuits which are used for performing the digital arithmatic operations such

as addition, subtraction, multiplication and division are called ‘arithmatic circuits’.

4.1.1 Adders
The most common arithmetic operation in digitel systems is the addition of two binary

digits. The combinational circuit that performs this operation is called a half-adder.

Half Adder
1. Fig. 4.3 shows a half adder (HA).
It has two inputs A and B. that are two 1-bit members, and

two output sum (S) and carry (C) produced by addition of two bits.

2. Truth Table :

Inputs Outputs

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

The sum output is 1 when any of inputs (A and B) is 1 and the carry output is 1 when
both the inputs are 1.

3. Using a two variable k-map, separately
for both outputs S and C.

HA
A

B

S

C

Fig. 4.3 Half adder

1

11 1

00 01 11 10

1

0

BC
A

1

1

0 1

1

0

B
A

For ‘S’

1

1

0 1

1

0

B
A

For ‘C’
 S = AB' + A'B C = AB

 = A ⊕ B.

138 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

4. Logical Implementation.

(i) Using Basic gates (as shown in Fig. 4.4(a)).

S = AB + A B��

C = AB

A B
A B�

AB�

Fig. 4.4 (a)

(ii) Using XOR gate as shown in Fig. 4.4 (b).

A
B S = A B = AB + A B� � �

C = AB

Fig. 4.4 (b)

Implementation using only NAND or only NOR gates is left as an exercise.

Full Adder
Full adder is a combinational circuit that performs the addition of three binary digits.

1. Fig. 4.5 shows a full adder (FA). It has three
inputs A, B and C and two outputs S and Co
produced by addition of three input bits. Carry
output is designated Co just to avoid confu-
sion between with i/p variable C.

2. Truth Table : The eight possible combinations of three input variables with their
respective outputs is shown. We observe that when all the three inputs are 1, the
sum and carry both outputs, are 1.

Inputs Output

A B C S C0

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

A

B
S
C0FA

C

Fig. 4.5 Full adder

COMBINATIONAL LOGIC 139

3. Using a three variable map for both outputs.

1

11

1

00 01 11 10

1

0

BC
A

For ‘S’

1

11 1

00 01 11 10

1

0

BC
A

For ‘C ’0

S = ABC + AB'C' + A'BC' + A'B'C and C0 = AB + AC + BC.

4. Logical Implementation. (i) Using basic gates as shown in Fig. 4.6.

S

C0

A B C

ABC

AB C� �

A BC� �

A B C� �

AB

AC

BC

Fig. 4.6

(ii) A ‘Full Adder’ can also be implemented using two half adders and an ‘OR’ Gate as
shown in Fig. 4.7

The Sum S = ABC + AB'C' + A'BC' + A'B'C
= ABC + A'B'C + AB'C' + A'BC'
= C (AB + A'B') + C' (AB' + A'B)
= C (AB' + A'B)' + C' (AB' + A'B)
= (A ⊕ B) ⊕ C

and the carry C0 = AB + AC + BC
= AB + C (A + B)
= AB + C (A + B) (A + A') (B + B')
= AB + C [AB + AB' + A'B]
= AB + ABC + C (AB' + A'B)
= AB (1 + C) + C (A ⊕ B)
= AB + C (A ⊕ B)

140 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Therefore, S = (A ⊕ B) ⊕ C and C0 = AB + C (A ⊕ B)

A
B

HA1 HA2

S

C0
C

Fig. 4.7 Implementation of full adder

Block Diagram representation of a full adder using two half adders :

C

A

B
HA1

S1

C1

HA2

S2

C2

Cout

Sum

S1 and C1 are outputs of first half adder (HA1)

S2 and C2 are outputs of second half adder (HA2)

A, B and C are inputs of Full adder.

Sum and Cout are outputs of full adder.

4.1.2 Subtractors
The logic circuits used for binary subtraction, are known as ‘binary subtractors’.

Half Subtractor : The half subtractor is a combinational circuit which is used to
perform the subtraction of two bits.

1. Fig. 4.8 shows a half subtractor. (HS)

It has two inputs, A (minered) and B (subtratend) and
two outputs D (difference) and B0 (Borrow). [The sym-
bol for borrow (B0) is taken to avoid confusion with
input variable B] produced by subtractor of two bits.

2. Truth Table

The difference output is 0 if A = B and 1 if A ≠ B; the borrow output is 1 whenever
A < B. If A < B, the subtraction is done by borrowing 1 from the next higher order
bit.

Inputs Outputs

A B D B0

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

HS
A

B

D

B0

Fig. 4.8 Half subtractor

COMBINATIONAL LOGIC 141

3. Using a two variable map, for outputs D and B.

1

1

0 1

1

0

B
A

‘D’

1

0 1

1

0

B
A

‘B ’0

D = AB' + A'B B0 = A'B

= A ⊕ B

4. Logical Implementation shwon in Fig. 4.9

(a) Using Basic gates (b) using XOR gate

D = AB + A B��

A B

B = A B0 �

A B�

AB�

A
B D

B0

Fig. 4.9 (a) Basic gate implementation Fig. 4.9 (b) X-OR gate implementation
half subtractor. of half subtactor

Full subtractor: Full subtractor is a combinational circuit that performs the subtraction
of three binary digits.

1. Fig. 4.10 shows a full subtractor (FS).

It has three inputs A, B and C and two outputs D
and B0. produced by subtraction of three input bits.

2. Truth Table

The eight possible combinations of three input variables with there respective
outputs is shown. We observe that when all the three inputs are 1, the diffrence
and borrow both outputs are 1.

Inputs Output

A B C B0 D
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

A

B
S
B0FS

C

Fig. 4.10 Full subtractor

142 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

3. Using a three variable map for both outputs.

1

11

1

00 01 11 10

1

0

BC
A

For ‘D’

1

1

1 1

00 01 11 10

1

0

BC
A

For ‘B ’0

D = ABC + AB'C' + A'BC' + A'B'C, B0 = A'B + A'C + BC

4. Logical implementation—

(i) Using basic gates : Left as an exercise.

(ii) A ‘full subtractor’ can also be implemented using two ‘half subtractors’ and an
 ‘OR’ gate as shwon in Fig. 4.11.

The difference ‘D’ = ABC + AB'C' + A'BC' + A'B'C

= ABC + A'B'C + AB'C' + A'BC'

= C (AB + A'B') + C' (AB' + A'B)

= C (AB' + A'B)' + C' (AB' +A'B)

= C (A ⊕ B)' + C' (A ⊕ B)

= (A ⊕ B) ⊕ C

and the borrow B0 = A'B + A'C + BC

= A'B + C (A' + B)

= A'B + C (A' + B) (A + A') (B + B')

= A'B + C [A'B + AB + A'B']

= A'B + A'BC + C (AB + A'B')

= A'B (C + 1) + C (A ⊕ B)'

= A'B + C (A ⊕ B)'

D = (A ⊕ B) ⊕ C and B0 = A'B + C (A ⊕ B)'

A
B

HS1

HS2

D

B0

C

Fig. 4.11 (a)

Block Diagram Representation of a full subtractor using two half subtractors :

COMBINATIONAL LOGIC 143

C

A

B
HS1

D1

B01

HS2

D2

B02

Bout

Difference

Fig. 4.11 (b)

D1 and B01 are outputs of first half subtractor (HSI)

D2 and B02 are outputs of second half subtractor (HS2)

A, B and C are inputs of full subtractor.

Difference and Bout are outputs of full subtractor.

4.1.3 Code Converters
In the previous study of codes, coding was defined as the use of groups of bits to

represent items of information that are multivalued. Assigning each item of information a
unique combination of bits makes a transformation of the original information. This we
recognize as information being processed into another form. Moreover, we have seen that
there are many coding schemes exist. Different digital systems may use different coding
schemes. It is sometimes necessary to use the output of one system as the input to other.
Therefor a sort of code conversion is necessary between the two systems to make them
compatible for the same information.

‘A code converter is a combinational logic circuit that changes data presented in one type
of binary code to another type of binary code.’ A general block diagram of a code converter
is shown in Fig. 4.12.

Code
ConverterCode X Code Y

Fig. 4.12 Code converter

To understand the design procedure; we will take a specific example of 4-bit Binary to
Gray code conversion.

1. The block diagram of a 4-bit binary to gray code converter is shown in Fig. 4.13.

4-bit
binary
input

Binary
to

Gray
Code

Converter

B3

B2

B1

B0

G3

G2

G1

G0

4-bit
Gray
Code
Output

Fig. 4.13

If has four inputs (B3 B2 B1 B0) representing 4-bit binary numbers and four outputs
(G3 G2 G1 G0) representing 4-bit gray code.

144 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

2. Truth table for binary to gray code converters.

Binary Inputs Gray code Outputs

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

3. Now we solve all the gray outputs distantly with respect to binary inputs From the
truth table; the logic expressions for the gray code outputs can be written as

G3 = Σ (8, 9, 10, 11, 12, 13, 14, 15)
G2 = Σ (4, 5, 6, 7, 8, 9, 10, 11)
G1 = Σ (2, 3, 4, 5, 10, 11, 12, 13)
G0 = Σ (1, 2, 5, 6, 9, 10, 13, 14).

The above expressions can be simplified using K-map

Map for G3:

From the octet, we get

G3 = B3

Map for G2:

From the two quads, we get

G2 = B3' B2 + B3 B2'

= B3 ⊕ B2.

1 11 1

00 01 11 10

01

00

B B1 0
B B3 2

1 11 111

10

1 11 1

00 01 11 10

01

00

B B1 0
B B3 2

1 11 1

11

10

COMBINATIONAL LOGIC 145

Map for G1:

From the two quads, we get

G1 = B2 B1' + B2' B1

= B2 ⊕ B1

Map for G0:

From the two quads, we get

G0 = B1'B0 + B1B0'

= B1 ⊕ B0.

4. Now the above expressions can be implemented using X-OR gates to yield the
disired code converter circuit shown in Fig. 4.14.

B0

B1

B2

B3

G0

G1

G2

G3Binary
Input Gray

Output

Fig. 4.14

Let us see one more example of XS-3 to BCD code converter.

1. The block diagram of an XS-3 to BCD code converter is shown in Fig. 4.15.

It has four inputs (E3, E2, E1, E0) representing 4 bit XS-3 number and four outputs
(B3B2 B1 B0) representing 4-bit BCD code.

4 bit
XS-3
Input

Excess-3
to

BCD
code

converter

E3

E2

E1

E0

B3

B2

B1

B0

4-bit
BCD
Coded
Output

Fig. 4.15

2. Truth Table for XS-3 to BCD code converter.

XS-3 codes are obtained from BCD code by adding 3 to each coded number. Moreover
4 binary variables may have 16 combinations, but only 10 are listed. The six not
listed are don’t care-combinations. Since they will never occur, we are at liberty to

1

1

1

1

00 01 11 10

01

00

B B1 0
B B3 2

1

1

1

1

11

10

1 1

1 1

00 01 11 10

01

00

B B1 0
B B3 2

1 1

1 1

11

10

146 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

assign to the output variable either a 1 or a 0, whichever gives a simpler circuit. In
this particular example, the unused i/o combinations are listed below the truth table.

Min Excess-3 BCD Decimal
Terms Inputs Outputs Equivalent

E3 E2 E1 E0 B3 B2 B1 B0

m3 0 0 1 1 0 0 0 0 0
m4 0 1 0 0 0 0 0 1 1
m5 0 1 0 1 0 0 1 0 2
m6 0 1 1 0 0 0 1 1 3
m7 0 1 1 1 0 1 0 0 4
m8 1 0 0 0 0 1 0 1 5
m9 1 0 0 1 0 1 1 0 6
m10 1 0 1 0 0 1 1 1 7
m11 1 0 1 1 1 0 0 0 8
m12 1 1 0 0 1 0 0 1 9

Unused I/Ps Outputs
m0 0 0 0 0 x x x x
m1 0 0 0 1 x x x x
m2 0 0 1 0 x x x x
m13 1 1 0 1 x x x x
m14 1 1 1 0 x x x x
m15 1 1 1 1 x x x x

* XS-3 is also a class of BCD codes.

3. Now we solve all the BCD outputs. From the truth table, the logic expressions for
the BCD coded outputs can be written as :

B3 = Σ (m11, m12), d (m0, m1, m2, m13, m14, m15)

B2 = Σ (m7, m8, m9, m10), d (m0, m1, m2, m13, m14, m15)

B1 = Σ (m5, m6, m9, m10), d (m0, m1, m2, m13, m14, m15)

B0 = Σ (m4, m6, m8, m10, m12), d (m0, m1, m2, m13, m14, m15).

These expressions can be simplified using k-map

1

00 01 11 10

01

00

E E1 0
E E3 2

1 XX X11

10

X X X

Map for B3

1

00 01 11 10

01

00

E E1 0
E E3 2

1

XX X11

10

X X X

Map for B2

1 1

B3 = E3 E2 + E3E1E0 B2 = E2' E0' + E2 E1 E0 + E2′E1′

COMBINATIONAL LOGIC 147

1

00 01 11 10

01

00

E E1 0
E E3 2

1

X X11

10

X X X

Map for B1

1

00 01 11 10

01

00

E E1 0
E E3 2

1

XX X11

10

X X X

Map for B0

1

1

1

1

1X

B1 = E1' E0 + E1 E0' B0 = E0'

= E1 ⊕ E0

B3 = E3 E2 + E3 E1 E0

B2 = E2' E0 + E2 E1 E0 + E2'E1'

B1 = E1 ⊕ E0

B0 = E0'

4. The expressions for BCD outputs (B3 B2 B1 B0) can be implemented for terms of
inputs (E3 E2 E1 E0) to form a XS-3 to BCD code converter circuit.

The implementation is left as an exercise.

4.1.4 Parity Generators and Checkers
When digital data is transmitted from one location to another, it is necessary to know

at the receiving end, wheather the received data is free of error. To help make the transmis-
sion accurate, special error detection methods are used.

To detect errors, we must keep a constant check on the data being transmitted. To check
accuracy we can generate and transmit an extra bit along with the message (data). This extra
bit is known as the parity bit and it decides wheather the data transmitted is error free or
not. There are two types of parity bits, namely, even parity and odd parity that we have
discussed in chapter 1 under error detecting codes.

Fig. 4.16 shows an error detecting circuit using a parity bit.

ABC
Error

Detector

P

A B C
Parity bit

Generator
Error
Alarm

A

B

C

Data

A

B

C

Data

Parity Checker

Inputs Transmission Outputs

Parity bit

Fig. 4.16

148 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

In this system three parallel bits A, B and C and being transmitted over a long distance.
Near the input they are fed into a parity bit generator circuit. This circuit generates what
is called a parity bit. It may be either ever or odd. For example, if it is a 3-bit even parity
generator, the parity bit generated is such that it makes total member of 1s even. We can
make a truth table of a 3-bit even parity generator circuit.

Truth Table for a 3-bit even parity generator.

Inputs Data Output
Even parity bit

A B C P

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Next, the truth table is converted to a logic circuit shown in Fig. 4.17.

P = A'B'C + A'BC' + AB'C' + ABC
= A' (B'C + BC') + A (B'C' + BC)
= A' (B ⊕ C) + A (BC′ + B′C)′
= A' (B ⊕ C) + A (B ⊕ C)'
= A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C = A ⊕ B ⊕ C.

The generated parity bit is transmitted with the data and near the output it is fed to the
error detector (parity checker) circuit. The detector circuit checks for the parity of transmitted
data. As soon as the total number of 1’s in the transmitted data are found ‘odd’ it sounds an alarm,
indicating an error. If total member of 1's are even, no alarm sounds, indicating no error.

In above example we are transmitting 4 bits. (3 bits of message plus 1 even parity bit).
So, it is easy to understand that. Error detector is nothing but a 4 bit even-parity checker
circuit. Fig. 4.18 (a) shows a truth table of a 4 bit even parity checker circuit.

Inputs Outputs
Transmitted Data Parity error

with parity bit check

A B C P E
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0

A
B
C

Parity
bit P

3-bit even parity generator
circuit

Fig. 4.17

(Contd.)

COMBINATIONAL LOGIC 149

0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Fig. 4.18 (a)

Now, we convert this truth table into logic circuit shown in Fig. 4.18(b).

E = A'B'C'P + A'B'CP' + A'BC'P' + A'BCP +

AB'C'P' + AB'CP + ABC'P + ABCP'

= A'B' (C ⊕ P) + A'B (C⊕ P)' + AB' (C⊕ P)' + AB (C⊕ P)

= (C ⊕ P) (A ⊕ B)' + (C ⊕ P)' (A ⊕ B)

= (A ⊕ B) ⊕ (C ⊕ P)

A
B

C
D

E (Parity Error Check)

A B�

C P�

Fig. 4.18 (b) 4-bit even parity checker

If E = 1, Alarm sounds means error.
If E = 0, No alarm sounds means no error.
Now, it is possible to implement the parity generator with the circuit of parity checker.

If the input P is connected to logic-0, causing the value of C to pass through the gate
unchanged. (because C ⊕ 0 = C). The advantage of this is that the same circuit can be used
for both parity generation and checking.

4.2 MSI AND LSI CIRCUITS
When designing logic circuits, the “discrete logic gates”; i.e., individual AND, OR, NOT

etc. gates, are often neither the simplest nor the most economical devices we could use.
There are many standard MSI (medium scale integrated) and LSI (large scale integrated)
circuits, or functions available, which can do many of the things commonly required in logic
circuits. Often these MSI and LSI circuits do not fit our requirements exactly, and it is often
necessary to use discrete logic to adapt these circuits for our application.

However, the number and type of these LSI and VLSI (very large scale integrated)
circuits is steadily increasing, and it is difficult to always be aware of the best possible circuits
available for a given problem. Also, systematic design methods are difficult to devise when the

150 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

types of logic device available keeps increasing. In general the “best” design procedure
is to attempt to find a LSI device which can perform the required function, or
which can be modified using other devices to perform the required function. If
nothing is available, then the function should be implemented with several MSI devices. Only
as a last option should the entire function be implemented with discrete logic gates. In fact,
with present technology, it is becoming increasingly cost-effective to implement a design as
one or more dedicated VLSI devices.

When designing all but the simplest logic devices, a “top-down” approach should be
adopted. The device should be specified in block form, and attempt to implement each block
with a small number of LSI or MSI functions. Each block which cannot be implemented
directly can be then broken into smaller blocks, and the process repeated, until each block
is fully implemented.

Of course, a good knowledge of what LSI and MSI functions are available in the
appropriate technology makes this process simpler.

4.2.1 The Digital Multiplexers
One MSI function which has been available for a long time is the digital selector, or

multiplexer. It is the digital equivalent of the rotary switch or selector switch (e.g., the
channel selector on a TV set). Its function is to accept a binary number as a “selector input,”
and present the logic level connected to that input line as output from the data selector.

A digital multiplexer (MUX) is a combinational circuits that selects one input out of
several inputs and direct it to a single output. The particular input selection is controlled by
a set of select inputs. Fig. 4.19 shows block diagram of a digital multiplexer with n inputs
lines and single output line.

For selecting one out of n input, a set of m select
inputs is required where

n = 2m

On the basis of digital (binary) code applied at the select
inputs, one output of n data sources is selected. Usually, an
enable (or strobe) input (E) is built-in for cascading purpose.
Enable input is generally active-low, i.e., it performs its in-
tended operation when it is low (logic).

Note. 16:1 are the largest available ICs, therefore for
larger input requirements there should be provision for
expansion. This is achieved through enable/stroble input
(multiplexer stacks or trees are designed).

A circuit diagram for a possible 4-line to 1-line data selector/multiplexer (abbreviated as
MUX for multiplexer) is shown in Fig. 4.20. Here, the output Y is equal to the input I0, I1,
I2, I3 depending on whether the select lines S1 and S0 have values 00, 01, 10, 11 for S1 and
S0 respectively. That is, the output Y is selected to be equal to the input of the line given by
the binary value of the select lines S1S0.

The logic equation for the circuit shown in Fig. 4.20 is:

� � � � � � � � � � � � �� ��� � � � � � � � � 	 � �� � � � � �+ + +
This device can be used simply as a data selector/multiplexer, or it can be used to

perform logic functions. Its simplest application is to implement a truth table directly, e.g.,

Fig. 4.19 Block diagram of the
digital multiplexer

COMBINATIONAL LOGIC 151

with a 4 line to 1 line MUX, it is possible to implement any 2-variable function directly, simply
by connecting I0, I1, I2, I3 to logic 1 in logic 0, as dictated by a truth table. In this way, a
MUX can be used as a simple look-up table for switching functions. This facility makes the
MUX a very general purpose logic device.

S1

S0

I0 I1 I2 I3

Y

Fig 4.20 A four-line to 1-line multiplexer

Example 1. Use a 4 line to 1 line MUX to implement the function shown in the following
truth table
� � ��� ����.

A
0
0
1
1

B
0
1
0
1

Y
1
0
0
1

=
=
=
=

I
I
I
I

0

1

2

3

1
0
0
1

I
I
I
I

0

1

2

3

Y

S1 S0

A B

Fig. 4.21 A 4-line to 1-line MUX implementation of a function of 2 variables

Simply connecting I0 = 1, I1 = 0, I2 = 0, I3 = 1, and the inputs A and B to the S1 and S0
selector inputs of the 4-line to 1-line MUX implement this truth table, as shown in Fig. 4.21.

The 4-line to 1-line MUX can also be used to implement any function of three logical
variables, as well. To see this, we need note only that the only possible functions of one
variable C, are C, �� and the constants 0 or 1. (i.e., C, � , � � � �, and 0). We need only
connect the appropriate value, C, � , 0 or 1, to I0, I1, I2, I3 to obtain a function of 3 variables.
The MUX still behaves as a table lookup device; it is now simply looking up values of another
variable.

Example 2. Implement the function

�
�� ��� ��� � ����� ����� ����� �����

Using a 4-line to 1-line MUX.

Here, again, we use the A and B variables as data select inputs. We can use the above
equation to construct the table shown in Fig. 4.22. The residues are what is “left over” in each
minterm when the “address” variables are taken away. To implement this circuit, we connect
I0 and I3 to C, and I1 and I2 to � , as shown in Fig. 4.22.

152 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

I
I
I
I

0

1

2

3

Input “Address” Other variables
(residues)

A . B
A . B
A . B
A . B

C
C
C
C

I
I
I
I

0

1

2

3

Y

S1 S0

C
C
C
C

BA

Fig. 4.22 A 4-line to 1-line MUX implementation of a function of 3 variables

In general a 4 input MUX can give any function of 3 inputs, an 8 input MUX can give
any functional of 4 variables, and a 16 input MUX, any function of 5 variables.

Example 3. Use an 8 input MUX to implement the following equation:

� � ������� ������� ������� ������� ������� �������

 ������� �������

Again, we will use A, B, C as data select inputs, or address inputs, connected to S2, S1
and S0, respectively.

I
I
I
I

0

1

2

3
I
I
I
I

4

5

6

7

Input “Address” Residues

A . B . C
A . B . C
A . B . C
A . B . C
A . B . C
A . B . C
A . B . C
A . B . C

D
D
D + D = 1

D
D
D + D = 1

I
I
I
I

0

1

2

3

I
I
I
I

4

5

6

7

Y

S2 S0

D
D
1
0
D
D
1
0

CA

S1

B

Fig. 4.23 An 8-line to 1-line MUX implementation of a function of 4 variables

Values of the address set A, B, C with no residues corresponding to the address in the
above table must have logic value 0 connected to the corresponding data input. The select
variables A, B, C must be connected to S2, S1 and S0 respectively. A circuit which implements
this function is shown in Fig. 4.23.

This use of a MUX as a “table look up” device can be extended to functions of a larger
number of variables; the MUX effectively removes the terms involving the variables assigned
to its select inputs from the logic expression. This can sometimes be an effective way to
reduce the complexity of implementation of a function. For complex functions, however, there
are often better implementations, as we use PLDs (see chapter 5).

Although it is obvious how the function shown in Fig. 4.20 can be extended a 2n line
to 1 line MUX, for any n, in practice, about the largest devices available are only to 16 line
to 1 line functions. It is possible to use a “tree” of smaller MUX’s to make arbitrarily large
MUX’s. Fig. 4.24 shows an implementation of a 16 line to 1 line MUX using five 4 line to
1 line MUX’s.

COMBINATIONAL LOGIC 153

Fig. 4.24 A 16-line to 1-line MUX made from five 4-line to 1-line MUX’s

4.2.2 Decoders (Demultiplexers)
Another commonly used MSI device is the decoder. Decoders, in general, transform a set

of inputs into a different set of outputs, which are coded in a particular manner; e.g., certain
decoders are designed to decode binary or BCD coded numbers and produce the correct output
to display a digit on a 7 segment (calculator type) display. Decoders are also available to
convert numbers from binary to BCD, from binary to hexadecimal, etc.

Normally, however, the term “decoder” implies a device which performs, in a sense, the
inverse operation of a multiplexer. A decoder accepts an n digit number as its n “select” inputs
and produces an output (usually a logic 0) at one of its 2n possible outputs. Decoders are usually
referred to as n line to 2n line decoders; e.g. a 3 line to 8 line decoder. This type of decoder
is really a binary to unary number system decoder. Most decoders have inverted outputs, so
the selected output is set to logic 0, while all the other outputs remain at logic 1. As well, most
decoders have an “enable” input � , which “enables” the operation of the decoder—when the �
input is set to 0, the device behaves as a decoder and selects the output determined by the
select inputs; when the � input is set to 1, the outputs of the decoder are all set to 1. (The
bar over the E indicates that it is an “active low” input; that is, a logic 0 enables the function).

154 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The enable input also allows decoders to be con-
nected together in a treelike fashion, much as we saw for
MUX’s, so large decoders can be easily constructed from
smaller devices. The enable input also allows the decoder
to perform the inverse operation of a MUX; a MUX se-
lects as output one of 2n inputs, the decoder can be used
to present an input to one of 2n outputs, simply by con-
necting the input signal to the � input; the signal at the
selected output will then be the same as the input at �—
this application is called “demultiplexing.” The demulti-
plexer (DEMUX) performs the reverse operation of
a multiplexer. A demultiplexer is a circuit that accepts
single input and transmit it over several (one of 2n

possible) outputs.

In the block diagram (Fig. 4.25) a demultiplexer, the number of output lines is n and the
number of select lines is m, where n = 2m.

One the basis of select input code, to which output the data will be transmitted is
determined. There is an active-low (low-logic) enable/data input. The output for these devices
are also active-low.

Note. 4-line to 16-line decoders are the largest available circuits in ICs.

A typical 3 line to 8 line decoder with an enable input behaves according to the following
truth table, and has a circuit symbol as shown in Fig. 4.26.

E
1
0
0
0
0
0
0
0
0

S2

S0

S1

S2

x
0
0
0
0
1
1
1
1

S1

x
0
0
1
1
0
0
1
1

S0

x
0
1
0
1
0
1
0
1

O0

1
0
1
1
1
1
1
1
1

O1

1
1
0
1
1
1
1
1
1

O2

1
1
1
0
1
1
1
1
1

O3

1
1
1
1
0
1
1
1
1

O4

1
1
1
1
1
0
1
1
1

O
1
1
1
1
1
1
0
1
1

5 O6

1
1
1
1
1
1
1
0
1

O7

1
1
1
1
1
1
1
1
0

O
O
O
O
O
O
O
O

0

1

2

3

4

5

6

7

E

Fig. 4.26 An 3-line to 8-line decoder

Note that, when the � input is enabled, an output of 0 is produced corresponding to each
minterm of S2, S1, S0. These minterm can be combined together using other logic gates to
form any required logic function of the input variables. In fact, several functions can be
produced at the same time. If the selected output was a logic 1, then the required minterms
could simply be ORed together to implement a switching function directly from its minterm
form. Using de Morgans theorem, we can see that when the outputs are inverted, as is
normally the case, then the minterm form of the function can be obtained by NANDing the
required terms together.

Example 1. An implementation the functions defined by the following truth table using
a decoder and NAND gates is shown in Fig. 4.27.

Fig. 4.25 Block diagram of the
demultiplexer/decoder

COMBINATIONAL LOGIC 155

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

Y1

0
1
1
0
1
0
0
0

S2

S0

S1

O
O
O
O
O
O
O
O

0

1

2

3

4

5

6

7

Y2

1
1
0
0
0
1
1
0

C

B

A
Y1

Y2

Fig. 4.27

IMPLEMENTATION EXAMPLES OF COMBINATIONAL LOGIC DESIGN USING
MUX/DEMUX

We have already seen how to implement combinational circuits using MUX/DEMUX. The
standard ICs available for multiplexers are 2:1, 4:1, 8:1 and 16:1. The different digital ICs are
given in appendix B, but for sake of convenience some of the MUX/DEMUX ICs are given
here in Tables A and B.

Table A: Standard multiplexer ICs

IC No. Description Output

74157 Quad. 2:1 Multiplexer Same as input

74158 Quad 2:1 MUX Inverted input

74153 Dual 4:1 MUX Same as input

74352 Dual 4:1 MUX Inverted input

74151A 8:1 MUX Complementary outputs

74152 8:1 MUX Inverted input

74150 16:1 MUX Inverted input

Table B: Standard Demultiplexer/Decoder ICs

IC No. Description Output

74139 Dual 1:4 Demultiplexer Inverted input
(2-line-to-4-line decoder)

74155 Dual 1:4 Demultiplexer 1Y-Inverted I/P
(2-line-to-4-line decoder) 2Y-Same as I/P

74138 1:8 Demultiplexer Inverted I/P

(3-line-to-8-line decoder)

74154 1:16 Demultiplexer Same as input

(4-line-to-16-line decoder)

When using the multiplexer as a logic element either the truth table or one of the
standard forms of logic expression must be available. The design procedure for combinational
circuits using MUX are as follows:

156 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

STEP 1: Identify the decimal number correspond-
ing to each minterm in the expression. The input lines
corresponding to these numbers are to be connected to
logic 1 (high).

STEP 2 : All other input lines except that used in
step 1 are to be connected to logic 0 (low).

STEP 3 : The control inputs are to be applied to
select inputs.

Example 2. Implement the following function with
multiplexer.

Y = F (A, B, C, D) = Σm (0, 1, 3, 4, 8, 9, 15)

Solution. STEP 1 : The input lines correspond-
ing to each minterms (decimal number) are to be con-
nected to logic 1.

Therefore input lines 0, 1, 3, 4, 8, 9, 15 have to
be connected to logic 1.

STEP 2 : All other input lines except 0, 1, 3, 4, 8,
9, 15 are to be connected to logic 0.

STEP 3 : The control inputs A, B, C, D are to be applied to select inputs.
Note: Although the given procedure is simple to implement but the 16 to 1 multiplexers are

the largest available ICs, therefore to meet the larger input needs there should be provision for
expansion. This is achieved with the help of enable/stroke inputs and multiplexer stacks or trees are
designed.

Example 3. Implement the following function with a 4×1 multiplexer.

Y = F (A, B, C) = Σm (1, 3, 5, 6)

Solution. Given Y = F (A, B, C) = Σm (1, 3, 5, 6)

= ��� ��� ��� ���

We use the A and B variables as data select inputs. We can use the above equation to
construct the table shown in Fig. 4.28. The residues are what is “left over” in each minterm
when the “address” variables are taken away.

Input “Address” Other variables
(residues)

I0 �� C
I1 �� C
I2 �� C
I3 AB �

Fig. 4.28 A 4-line to 1-line MUX implementation of a function of 3 variables

To implement this circuit, we connect I0, I1 and I2 to C and I3 to � as shown in Fig. 4.28.

Example 4. Using four-input multiplexer, implement the following function

Y = F (A, B, C) = Σm (0, 2, 3, 5, 7)
Control variables A, B.

I
I
I
I

0

1

2

3

Y

C
1
C
C

S1 S0

BA

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Y

S3 S1

CA

S2

B

S0

D

16 : 1
MUX

Logic 1 Logic 0

E

(MSB) (LSB)

COMBINATIONAL LOGIC 157

Solution. Given Y = F (A, B, C) = Σm (0, 2, 3, 5, 7)

= ��� ��� ��� ��� ���

We can use the above equation to construct the table shown in Fig. 4.29. The residues
are what is “left over” in each minterm when the “address/control” variables are taken away.

Input “Address” Other variables
(residues)

I0 �� �

I1 �� � � � �

I2 �� C
I3 AB C

Fig. 4.29 A 4-line to 1-line MUX implementation of a function of 3 variables

To implement this function, we connect I0 to � , I1 to 1 and I2 and I3 to C, as shown
in Fig. 4.29.

Example 5. Design a full adder using 8:1 multiplexer.

Solution. The truth table of a full adder is given as

A B C S CF

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

 S (A, B, C) = ��� ��� ��� ��� � Σ�
 � � � �� � � �

CF (A, B, C) = ��� ��� ��� ��� �
	� �� �� ��Σ�

The implementation for summation expression is

Step 1: The input lines corresponding to 1, 2, 4, 7 are to be connected to logic 1.

Step 2: Other input lines are to be connected to logic 0.

Step 3: Control inputs A, B, C are to be applied to select inputs. Fig. 4.30 A.

Similarly for carry expression.

Step 1: The input lines corresponding to 3, 5, 6, 7 are to be connected to logic 1.

Step 2: Other input lines are to be connected to logic 0.

Step 3: Control inputs A, B, C are to be applied to select inputs. Fig. 4.30 B.

I
I
I
I

0

1

2

3

Y

C
C
C
C

S1 S0

BA

4 : 1
MUX

158 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

0
1
2
3
4
5
6
7

S

S1

CA

S2

B

S0

8 : 1
MUX

Logic 1 Logic 0

0
1
2
3
4
5
6
7

CF

S1

CA

S2

B

S0

8 : 1
MUX

Logic 1 Logic 0

(A) (B)

Fig. 4.30 Full adder implementation using 8:1 multiplexer

Example 6. Implement a full adder with a decoder and two OR-gates.

Solution. From the previous example we note that expression for summation is
given by

S (A, B, C) = Σm (1, 2, 4, 7)

and expression for carry is given by

CF (A, B, C) = Σm (3, 5, 6, 7)

The combinational logic of full adder can be implemented with due help of 3-line to 8-
line decoder/1:8 demultiplexer as shown in Fig. 4.31.

0
1
2
3
4
5
6
7

3 × 8
decoder

LSB

MSB

S

C

B

A

Fig. 4.31 Full adder implementation using 3 × 8 decoder

Example 7. A combinational circuit is defined by the following Boolean functions. Design
circuit with a decoder and external gates.

Solution. Y1 = F1(A, B, C) =�� � ��

Y2 = F2(A, B, C) = ��� ��

Given Y1 = � � � ��

First we have to write the expression in minterms, if the expression is not in the form
of minterms by using
� �+ = ��

COMBINATIONAL LOGIC 159

Fig. 4.32 Function implementation using 3×8 decoder

Therefore, Y1 = ��� ��

Y1 = ��� ��
���

Y1 = ��� ��� ���

Y1 = Σm (0, 5, 7)

Y2 = ��� ��

Y2 = ��� ��
���

Y2 = ��� ��� ���

Y2 = Σm (1, 3, 5)

The combinational logic for the boolean function can be implemented with the help of
3-line to 8-line decoder as shown in Fig 4.32.

Example 8. Realise the given function using a multiplexer

Y(A, B, C, D) = ΠM (0, 3, 5, 9, 11, 12, 13, 15)

Solution. To implement the given function, first we have to express the function in
terms of sum of product. i.e.,

 Y (A, B, C, D) = Σm (1, 2, 4, 6, 7, 8, 10, 14)

Now the given function in this form can be realized as

Step 1: Input lines corresponding to 1, 2, 4, 6, 7, 8, 10, 14 are to be connected to logic 1.

Fig. 4.33 A 16-line to 1-line MUX implementation

160 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Step 2: Other input lines are to be connected to logic 0.

Step 3: Control inputs A, B, C, D are to be applied to select inputs.

Example 9. Realize the following boolean expression using 4:1 MUX(S) only.

Z = ��� � ���� ���� ���� ��� � ����+ + + + +
Solution. Given Z = Σm (0, 6, 8, 10, 11, 15)

To implement the given boolean expression we must have 16 input and 4 selection
inputs.

Since 4:1 mux has 4 input lines and two selection lines. Therefore we can use 4, 4:1 MUX
with their select lines connected together. This is followed by a 4:1 MUX to select one of the
four outputs. The select lines of the 4:1 MUX (final) are driven from inputs A, B. The complete
circuit is shown in Fig. 4.34.

0
1
2
3

4 : 1
MUX

C D

4
5
6
7

4 : 1
MUX

C D

8
9
10
11

4 : 1
MUX

C D

12
13
14
15

4 : 1
MUX

C D

I
I
I
I

0

1

2

3

4 : 1
MUX

A B

Logic 0 Logic 1

Z

S1 S0

Fig. 4.34 A 4-line to 1-line MUX implementation of a function of 4 variable

COMBINATIONAL LOGIC 161

4.2.3 Encoders
The encoder is another example of

combinational circuit that performs the inverse
operation of a decoder. It is disigned to generate
a diffrent output code for each input which becomes
active. In general, the encoder is a circuit with m
input lines
 � �� �≤ � (* m < 2n → If unused input
combinations occur.) and n output lines that
converts an active input signal into a coded output signal. In an encoder, the number of outputs
is less than the number of inputs. The block diagram of an encoder is shown in Fig. 4.35.

An example of an encoder is an octal to binary encoder. An octal to binary encoder accept
eight inputs and produces a 3-bit output code corresponding to the activated input. The truth
table for the octal to binary encoder is shown below in table.

Inputs Outputs

O0 O1 O2 O3 O4 O5 O6 O7 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

It has eight inputs, one for each octal digit and three outputs that generate the corre-
sponding binary number.

The truth table shows that Y0 must be 1 whenever the input O1 or O3 or O5 or O7 is
high. Thus,

Y0 = O1 + O3 + O5 + O7
Similarly Y1 = O2 + O3 + O6 + O7 and

Y2 = O4 + O5 + O6 + O7.
Using these three expressions, the circuit can be implemented using three 4-input OR

gates as shown in Fig. 4.36.
O0 O1 O2 O3 O4 O5 O6 O7

Y0

Y1

Y2

Fig. 4.36 Octal to binary encoder

Encoder
m

Inputs
n

Inputs

Fig. 4.35 Block diagram of an encoder

162 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The encoder has two limitations:

1. Only one input can be active at any given time. If two or more inputs are equal
to 1 at the same time, the O/P is undefined. For example if O2 and O5 are active
similtaneously, the o/p of encoder will be 111 that is equal to binary 7. This does
not represent binary 2 or 5.

2. The output with all 0’s is generated when all inputs are ‘0’, and is also true when
O0 = ‘1’.

The first problem is taken care by a circuit, called as ‘priority encoder’. It establishes a
priority to ensure that only one input is active (High) at a given time.

The second problem is taken care by an extra line in the encoder output, called ‘valid
output indicator’ that specifies the condition that none of the inputs are active.

Priority Encoder
A priority encoder is an encoder that includes priority function. If two or more inputs are

equal to 1 at the same time, the input having the highest priority will take precedence. To
understand priority encoder, consider a 4 to 2 line encoder which gives priority to higher
subscript number input than lower subscript number. The truth table is given below.

Truth Table of 4 to 2 line priority encoder:

Inputs Outputs

D0 D1 D2 D3 Y1 Y2 V

0 0 0 0 x x 0

1 0 0 0 0 0 1

x 1 0 0 0 1 1

x x 1 0 1 0 1

x x x 1 1 1 1

The X’s are don’t care conditions. Input D3 has the highest priority, so regardless of
values of other inputs, when this input is 1, the output Y1 Y2 = 11. D2 has next priority level.
The o/p is 10 if D2 is 1, provided D3 = 0, irrespective of the values of the other two lower-
priority inputs. The o/p is 01 if D1 is 1, provided both D2 and D3 are 0, irrespective of the
value of lower-priority input D0. The o/p is 00 if D0 = 1, provided all other inputs are 0.

A valid output indicator, V is set to 1, only when one or more of the inputs are equal
to 1. If all the inputs are 0, V is equal to 0 and the other two outputs of the circuit are not
used.

Now, simplifying using k-map the outputs can be written as :

Y1 = D2 + D3

Y2 = D3 + D1 D2'

V = D0 + D1 + D2 + D3.

The logic diagram for a 4 to 2 line priority encoder with ‘valid output indicator’ is shown
below in Fig. 4.37.

COMBINATIONAL LOGIC 163

D0 D1 D2 D3

Y1

Y2

V

Fig. 4.37

4.2.4 Serial and Parallel Adders
In section 4.1.1 we have discussed the full-adder circuit. Full adder is a combinational

circuit that adds three binary digits. When we add two numbers of any length, the terms we
have to deal with are :

Input carry, Augend, Addend, sum and output carry. We simply start adding two binary
digits from LSB (rightmost positioned bits). At this position, the input carry is always equal
to zero. After addition, we get sum and output carry. This output carry works as the input
carry to the next higher positioned augend and addend bits. Next we add augend and addend
bits alongwith the input carry that again produces sum and output carry. The process repeats
upto MSB position (leftmost positioned bits).

We observe that in the process of addition we are actually adding three digits – the input
carry, the augend bit and the addend bit. And, we are getting two outputs the sum and the
output carry.

This can be illustrated by the following example. Let the 4-bits words to be added be
represented by:

A3 A2 A1 A0 = 1 1 0 1 and B3 B2 B1 B0 = 0 0 1 1.

Significant Place 3 2 1 0

Input Carry 1 1 1 0
Augend Word 1 1 0 1
Addend Word 0 0 1 1

Sum 0 0 0 0
1 1 1 1

Carry-In

Carry-out
Output carry

Now, if we compare this with the full adder circuit, we can easily observe that the two
inputs (A and B) are augend and addend bits with the third input (c) as the input carry.
Similarly two outputs are sum (s) and output carry (C0).

In general, the sum of two n-bit numbers can be generated by using either of the two
methods : the serial addition and the parallel addition.

164 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Serial Adder
In serial addition, the addition operation is carried out bit by bit. The serial adder uses

one full adder circuit and some storage device (memory element) to hold generated output
carry. The diagram of a 4 bit serial adder is shown in Fig. 4.38.

The two bits at the same positions in augend and addend word are applied serialy to A
and B inputs of the full adder respectively. The single full adder is used to add one pair of
bits at a time along with the carry Cin. The memory element is used to store the carry output
of the full adder circuit so that it can be added to the next significant position of the nembers
in the augend and addend word. This produces a string of output bits for sum as S0, S1, S2
and S3 respectively.

A

B

C

S

Cout

Full
Adder
Circuit

A3 A2 A1 A0

B3 B2 B1 B0

Augend word

Addend Word

Input Carry C
(Always ‘0’ at LSB)

in

S3 S2 S1 S0 Sum output

Output Carry

Storage Device
(Memory element)

Fig. 4.38 4-bit serial adder

Parallel Adder
To add two n-bit numbers, the parellel method uses n full adder circuits and all bits of

addend and augend bits are applied simultaneously. The output carry from one full adder is
connected to the input carry of the full adder one position to its left.

The 4-bit adder using full adder circuit is capable of adding two 4-bit numbers resulting
in a 4-bit sum and a carry output as shown in Fig. 4.39.

A3 B3

C4

Cout

S3

Full
Adder C3

A2 B2

C3

S2

Full
Adder C2

A1 B1

C1

S1

Full
Adder C0

A0 B0

C1

S0

Full
Adder C0

Cin = 0

Fig. 4.39 4-bit binary parallel adder

The addition operation is illustrated in the following example. Let the 4-bit words to be
added be represented by A3 A2 A1 A0 = 1 0 1 0 and B3 B2 B1 B0 = 0 0 1 1.

Subscript i 3 2 1 0 ← Significant place.
Input carry Ci 0 1 0 0
Augend Ai 1 0 1 0
Addend Bi 0 0 1 1
Sum Si 1 1 0 1
Output carry Ci+1 0 0 1 0

COMBINATIONAL LOGIC 165

In a 4-bit parallel adder, the input to each full adder will be Ai, Bi and Ci, and the outputs
will be Si and Ci+1, where i varies from 0 to 3.

In the least significant stage, A0, B0 and C0 (which is 0) are added resulting in sum S0
and carry C1. This carry C1 becomes the carry input to the second stage. Similarly, in the
second stage, A1 B1 and C1 are added resulting in S1 and C2; in the third stage, A2 B2 and
C2 are added resulting in S2 and C3; in the fourth stage A3, B3 and C3 are added resulting
in S3 and C4 which is the output carry. Thus the circuit results in a sum (S3, S2, S1, S0) and
a carry output (Cout).

An alternative block diagram representation of a 4 bit binary parallel adder is shown in
Fig. 4.40.

B3 B2 B1 B0 A3 A2 A1 A0

4-bit
binary

parallel adder
S3 S2 S1 S0

CinCout

Addend Augland

Fig. 4.40 4-bit binary parallel adder

Propagation Delay: Though the parallel binary adder is said to generate its output
immediately after the inputs are applied, it speed of operation is limited by the carry propaga-
tion delay through all stages. In the parallel binary adder, the carry generated by the adder is
fed as carry input to (i + 1)th adder. This is also called as ‘ripple carry adder’. In such adders,
the output (Cout, S3, S2, S1, S0) is available only after the carry is propogated through each of
the adders, i.e., from LSB to MSB adder through intermediate adders. Hence, the addition
process can be considered to be complete only after the carry propagation delay through adders,
which is proportional to number of stages in it; one of the methods of speeding up this process
is look-ahead carry addition, which eliminates the ripple carry delay. This method is based on
the carry generating and the carry propagating functions of the full adder.

4-bit Look-ahead Carry Generator
The look-ahead carry generator is based on the principle of looking at the lower order

bits of addend and augend if a higher order carry is generated. This reduces the carry delay
by reducing the number of gates through which a carry signal must propagate. To explain its
operation consider the logic diagram of a full adder circuit Fig. 4.41.

Augend Ai
Addend Bi

Ci+1 (o/p carry)

Si (sum)
Pi

Gi

I/P
Carry Ci

Fig. 4.41 Full adder

166 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

We define two new intermediate output variable Pi and Gi.

Pi = Ai ⊕ Bi ; called carry propagate, and

Gi = Ai . Bi, called carry generate.

We now write the Boolean function for the carry output of each stage and substitute for
each Ci its value from the previous equations :

C1 = G0 + P0 C0

C2 = G1 + P1 C1 = G1 + P1 (G0 + P0 C0) = G1 + P1 G0 + P1 P0 C0.

C3 = G2 + P2 C2 = G2 + P2 (G1 + P1 G0 + P1 P0 C0)

= G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0.

Note that C3 does not have to wait for C2 and C1 to propagate; in fact C3 is propagated
at the same time as C1 and C2.

Next we draw the logic diagram of this 4 bit look-ahead carry generator as shown in
Fig. 4.42.

C3

C2

C1

P2

G2

P1

G1

P0

G0

C0

Fig. 4.42 4-bit look-ahead carry generator

4-bit binary parallel adder with a look-ahead carry generator (FAST ADDER)
In the 4-bit look ahead carry generator. We have seen that all the carry outputs are

generated simultaneously with the application of Augend word, addend word and the input
carry. What is remaining are the sum outputs. From the newly defined full adder circuit of
Fig. 4.41, we notice that the sum output Si = Pi ⊕ Ci.

S0 = P0 ⊕ C0 = A0 ⊕ B0 ⊕ C0

S1 = P1 ⊕ C1 = A1 ⊕ B1 ⊕ C1

S2 = P2 ⊕ C2 = A2 ⊕ B2 ⊕ C2

S3 = P3 ⊕ C3 = A3 ⊕ B3 ⊕ C3.

Similarly carry output Ci+1 = Gi + Pi Ci

Therefore, Final o/p carry C4 = G3 + P3 C3.

COMBINATIONAL LOGIC 167

Using the above equations, the 4-bit binary parallel adder with a look ahead carry
generator can be realized as shown in Fig. 4.43.

B3

A3 P3

G3

C4

C3
P3 S3

Output carry

B2

A2 P2

G2 C2

P2 S2

B1

A1 P1

G1 C1

P3 S1

B0

A0 P0

G0

P0 S0

Input
Carry

C0 C0

4-bit
Look-aheed

Carry
Generator

Fig. 4.43 Four bit binary parallel adder with look-ahead carry generator

From the diagram, note that the addition of two 4 bit numbers can be done by a look
ahead carry generator in a 4 gate propagation time (4 stage implementation). Also, it is
important to realize that the addition of n-bit binary numbers takes the same 4-stage propa-
gation delay.

4-bit Parallel Adder/Subtractor
The 4-bit binary parallel adder/subtractor can be realized with the same circuit taking

into consideration the 2’s complement method of subtraction and the controlled inversion
property of the Exclusive OR gate.

The subtraction of two binary number by taking 2’s complement of the subtrahend and
adding to the minuend. The 2’s complement of the subtrahend can be obtained by adding 1
to the 1’s complement of the subtrahend.

From the Exclusive OR operation, we know when one of the input is low the output is
same as the other input and when one of the input is high the output is the complement of
the other input.

Control input C
Other input X Y

Y = C X' + C'X

Naturally, if C = 0, Y = X

C = 1, Y = X'

168 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The 4-bit binary parallel adder/subtractor circuit is shown in Fig. 4.44. that perform the
operation of both addition and subtraction. It has two four bit inputs A3 A2 A1 A0 and B3 B2
B1 B0. The control input line C, connected with the input carry of the LSB of the full adder,
is used to perform both operations.

To perform subtraction, the C (control input) is kept high. The controlled inverter pro-
duces the 1's complement of the adder (B3' B2' B1' B0'). Since 1 is given to input carry of the
LSB of the adder, it is added to the complemented addend producing 2's complement of the
addend before addition.

A3 B3 A2 B2 A1 B1 A0 B0

C4

S3

C3

S2

C2

S1

C1

S0

FA FA FA FA C0

Output
Carry C� out

Control
Input Cin

Input
carry
Cin

Fig. 4.44 Bit binary parallel adder/subtractor

Now the angend (A3A2A1A0) will be added to the 2's complement of addend (B3B2B1B0)
to produce the sum, i.e., the diffrence between the addend and angend, and Cout (output
carry), i.e. the borrow output of the 4-bit subtractor.

When the control input ‘C’ is kept low, the controlled inverter allows the addend (B3 B2 B1
B0) without any change to the input of full adder, and the input carry Cin of LSB of full adder,
becomes zero, Now the augend (A3 A2 A1 A0) and addend (B3 B2 B1 B0) are added with Cin = 0.
Hence, the circuit functions as 4-bit adder resulting in sum S3 S2 S1 S0 and carry output Cout.

4.2.5 Decimal Adder
A BCD adder is a combinational circuit that adds two BCD digits in parallel and produces

a sum digit which is also in BCD. The block diagram for the BCD adder is shown in Fig. 4.45.
This adder has two 4-bit BCD inputs A8 A4 A2 A1 and B8 B4 B2 B1 and a carry input Cin. It
also has a 4-bit sum output S8 S4 S2 S1 and a carry output Cout. Obviously the sum output
is in BCD form. (This is why subscripts 8, 4, 2, 1 are used).

If we consider the arithmetic addition of two decimal digits in BCD, the sum output can
not be greater than 9 + 9 + 1 = 19. (Since each input digit does not exceed 9 and 1 being the
possible carry from previous stage).

Suppose, we apply two BCD digits to a 4-bit binary parallel adder. The adder will form
the sum in binary and produce a sum that will range from 0 to 19. But if we wish to design
a BCD adder, it must be able to do the following.

COMBINATIONAL LOGIC 169

1. Add two 4-bit BCD numbers using straight binary addition.

2. If the four bit sum is equal to or less than 9, the sum is in proper BCD form.

3. If the four bit sum is greater than 9 or if a carry is generated from the sum, the
sum is not in BCD form. In this case a correction is required that is obtained by
adding the digit 6 (0110) to the sum produced by binary adder.

B8 B4 B2 B1 A8 A4 A2 A1

S8 S4 S2 S1

Input carry
(Cin)

Output
carry (Cout)

Addend
BCD digit

Augend
BCD digit

Fig. 4.45 Block diagram of a BCD adder

The table shows the results of BCD addition with needed correction.

Decimal Uncorrected Corrected
Digit BCD sum BCD sum

produced by produced by
Binary Adder. BCD Adder.

K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1
2 0 0 0 1 0 0 0 0 1 0
3 0 0 0 1 1 0 0 0 1 1
4 0 0 1 0 0 0 0 1 0 0
5 0 0 1 0 1 0 0 1 0 1
6 0 0 1 1 0 0 0 1 1 0
7 0 0 1 1 1 0 0 1 1 1
8 0 1 0 0 0 0 1 0 0 0
9 0 1 0 0 1 0 1 0 0 1
10 0 1 0 1 0 1 0 0 0 0
11 0 1 0 1 1 1 0 0 0 1
12 0 1 1 0 0 1 0 0 1 0
13 0 1 1 0 1 1 0 0 1 1
14 0 1 1 1 0 1 0 1 0 0
15 0 1 1 1 1 1 0 1 0 1
16 1 0 0 0 0 1 0 1 1 0
17 1 0 0 0 1 1 0 1 1 1
18 1 0 0 1 0 1 1 0 0 0
19 1 0 0 1 1 1 1 0 0 1

U

V

|||||||

W

|||||||

��

���������

!�"#���$

U

V

|||||||

W

|||||||

���������

!�"#���$

170 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The binary numbers are listed, labled as K Z8 Z4 Z2 Z1. K is the output carry and subscript
under Z represent the weight 8, 4, 2 and 1. The first table lists the binary sums as produced
by a 4-bit binary adder. For representing them in BCD, they must appear as second table.

From the two tables it is clear that upto 9, the binary sum is same as the BCD sum,
so no correction is required. When the sum is greater than 9, the binary sum is diffrent from
BCD sum, means correction is required. Therefore, a BCD adder must include the correction
logic in its internal construction. Moreover, the circuit is required to develop a logic in its
internal construction that indicates for needed correction.

This later logic can be developed by observing the two table entries. From tables it is
clear that the correction is required when K = 1 or Z8 Z4 = 1 or Z8 Z2 = 1.

or when k = 1 or Z8 (Z4 + Z2) = 1.

K = 1, means the result is 16 or above,

Z8 Z4 =1, means the result is 12 or above and

Z8 Z2 = 1, means the result is 10 or above.

Therefore, the condition for correction can be written as :

C = K + Z8 (Z4 + Z2)

i.e., whenever C = 1, we need correction ⇒ Add binary 0110 (decimal 6) to the sum
produced by 4 bit binary adder. It also produce an output carry for the next stage. The BCD
adder can be implemented using two 4-bit binary parallel adders as shown in Fig. 4.46.

B8 B4 B2 B1 A8 A4 A2 A1

Z8 Z4 Z2 Z1

Carry
out

Addend
BCD digit

Augend BCD
digit

K Cin4-bit Binary Adder-1

B8 B4 B2 B1 A8 A4 A2 A1

Carry
InCin4-bit Binary Adder-2

S8 S4 S2 S1

Logic O
Output
Carry (C)out

Carry
In

(Correction-logic)

C

0 1 1 0

Fig. 4.46 BCD adder using two 4-bit binary adders along with the correction logic C

COMBINATIONAL LOGIC 171

Here A8 A4 A2 A1 and B8 B4 B2 B1 are the BCD inputs. The two BCD inputs with input
carry Cin are first added in the 4-bit binary adder-1 to produce the binary sum Z8, Z4, Z2, Z1
and output carry K. The outputs of adder-1 are checked to ascertain wheather the output is
greater than 9 by AND-OR logic circuitry. If correction is required, then a 0110 is added with
the output of adder-1. Now the 4-bit binary adder-2 forms the BCD result (S8 S4 S2 S1) with
carry out C. The output carry generated from binary adder-2 can be ignored, since it supplies
information already available at output carry terminal C.

4.2.6. Magnitude Comparator
A magnitude comparator is a combinational circuit designed primarily to compare the

relative magnitude of the two binary numbers A and B. Naturally, the result of this compari-
son is specified by three binary variables that indicate, wheather A > B, A = B or A < B.

The block diagram of a single bit magnitude comparator is shown in Fig. 4.47.

Single-bit
magnitude

comparated

A > B
A = B
A < B

A

B

OutputsInputs

Fig. 4.47 Block diagram of single bit magnitude comparator

To implement the magnitude comparator the properties of Ex-NOR gate and AND gate
is used.

Fig. 4.48(a) shows an EX-NOR gate with two inputs A and B. If A = B then the output
of Ex-NOR gate is equal to 1 otherwise 0.

A
B

= 1 if A = B and
0 if A B�

Fig. 4.48 (a)

Fig. 4.48 (b) and (c) shows AND gates, one with A and B' as inputs and another with A'
and B as their inputs.

A
B�

= 1 if A > B
A�
B

= 1 if A < B

Fig. 4.48 (b) Fig. 4.48 (c)

The AND gate output of 4.48(b) is 1 if A > B (i.e. A = 1 and B = 0) and 0 if A < B (i.e.
A = 0 and B = 1). Similarly the AND gate output of 4.48(c) is 1 if A < B (i.e. A = 0 and B =
1) and 0 if A > B (i.e. A = 1 and B = 0).

If the EX-NOR gate and two AND gates are combined as shown in Fig. 4.49(a), the circuit
with function as single bit magnitude comparator. For EX-NOR implementation.

A

B

Y A > B1��

Y A = B2��

Y A < B3��

Fig. 4.49 (a) Single bit magnitude comparator

172 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

We have used EX-OR followed by an inverter.

Truth table of a single bit magnitude comparator.

Inputs Output

A B Y1 Y2 Y3

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

It clearly shows Y1 is high when A > B.

Y2 is high when A = B

Y3 is high when A < B.

The same principle can be extended to an n-bit magnitude comparator.

4-bit Magnitude Comparator
Consider two numbers A and B, with four digits each.

A = A3 A2 A1 A0

B = B3 B2 B1 B0.

(a) The two numbers are equal if all pairs of significant digits are equal i.e. if A3 = B3,
A2 = B2, A1 = B and A0 = B0. We have seen that equality relation is generaed by
EX-NOR gate. Thus

xi = Ai . Bi = Ai Bi + Ai' Bi', i = 0, 1, 2, 3.

Where xi represents the equality of two numbers

xi = 1, if A = B.

xi = 0, otherwise.

If follows an AND operation of all variables.

Therefore, (A = B) = x3 x2 x1 x0 = 1 only if all pairs are equal.

(b) To determine if A > B or A < B, we check the relative megnitude of pairs of
significant digits starting from MSB. If the two digits are equal, we compare the
next lower significant pair of digits. The comparison follows until a pair of unequal
digits are reached. If the corresponding digit of A is 1 and that of B is 0, we say
that A > B. If the corresponding digit A is 0 and that of B is 1 ⇒ A < B.

This discussion can be expressed logically as :

(A > B) = A3 B3' + x3 A2 B2' + x3 x2 A1 B1' + x3 x2 x1 A0 B0'

(A < B) = A3' B3 + x3 A2' B2 + x3 x2 A1' B1 + x3 x2 x1 A0' B0.

The logical implementation is shown in Fig. 4.49(b)

COMBINATIONAL LOGIC 173

A3
B�3
A2
B�2
A1
B�1
A0B�0

A > B

A3
B3

x3

A2
B2

x2

A1
B1

x1

A1
B1

x0

A = B

A 3�
B3

A 2�
B2

A 1�
B1

A 0�
B0

A < B

Fig. 4.49(b) Logical implementation of or 4-bit magnitude comparator

4.3 HAZARDS
In digital circuits it is important that undesirable glitches (spikes) on signal should not

occure. Therefore in circuit design one must be aware of the possible sources of glitches
(spikes) and ensure that the transitions in a circuit will be glitch free. The glitches (spikes)
caused by the structure of a given circuit and propagation delays in the circuit are referred
to as hazards. Hazards occur in combinational circuits, where they may cause a temporary
false-output value.

4.3.1 Hazards in Combinational Circuits
Hazards is unwanted switching transients appearing in the output while the input to

a combinational circuit (network) changes. The reason of hazard is that the different paths
from input to output have different propagation delays, since there is a finite propagation
delay through all gates. Fig. 4.50 depicts the propagation delay in NOT gate.

In the circuit analysis, dynamic behaviour is an important consideration. The propaga-
tion delay of circuit varies and depends upon two factors.

• Path of change through circuit.
• Direction of change within gates.

174 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Input Output

Input

Output

Time

Propagation delay

Fig. 4.50

The glitches (spikes) are momentary change in output signal and are property of circuit,
not function as depicted in Fig. 4.51.

1
0

1

0

1 0

1

1 1

0

Fig. 4.51

Hazards/Glitches (spikes) are dangerous if

• Output sampled before signal stabilizes

• Output feeds asynchronous input (immediate response)

The usual solutions are :

• Use synchronous circuits with clocks of sufficient length

• Minimize use of circuits with asynchronous inputs

• Design hazard free circuits.

Example. Show that the combinational circuit % �� ��= + having hazards.

Solution. For % �� ��= + ; if B and D are 1 then Q should be 1 but because of propa-
gation delays, if B changes stage then Q will become unstable for a short time, as follows :

Q

(C)
A

B

D

A
D
B

(C)
Q

High
High

Glitch

Fig. 4.52

Therefore, the given combinational circuit having hazards

COMBINATIONAL LOGIC 175

4.3.2 Types of Hazards
Two types of hazards are illustrated in Fig. 4.53.

• Static hazard

• Dynamic hazard.

0 0

1

Static 0-hazard

0

1

Static 1-hazard

1

 0 0

1

Dynamic hazard

1

0 0

1 1

Fig. 4.53

1. Static 1 (0) hazard
A static hazard exists if, in response to an output change and for some combination of

propagation delays, a network output may momentarily go to 0 (1) when it should remain a
constant 1 (0), we say the network has a static 1 (0) hazard. Example of static hazard is shown
in Fig. 4.54 (a).

Example.

A
S

B

S�

F

Static-0 hazard Static-1 hazard

A

B

S

S�

F
Hazard

Fig. 4.54 (a)

2. Dynamic Hazard
A different type of hazard may occur if, when the output is suppose to change from 0 to

1 (or 1 to 0), the output may change three or more times, we say the network has a dynamic
hazard. Example of dynamic hazard is shown in Fig. 4.54 (b).

Example:

A

C

B1

Hazard

A

B

C

3

1
2

dynamic hazards

B2
B3
F

Fig. 4.54 (b)

176 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

4.3.3 Hazard Free Realizations
The occurrence of the hazard can be detected by inspecting the Karnaugh Map of the

required function. Hazards like example (Fig. 4.52) are best eliminated logically. The Fig. 4.52
is redrawn here (Fig. 4.55).

Q

A

B

D

(C)

Fig. 4.55

% �� ��= +

The Karnaugh Map of the required function is given in Fig. 4.56.

00 01 11 10
AB

D

0

1

0

0

0 0 1

111

BD

AB

Fig. 4.56 K-Map of the given circuit

Whenever the circuit move from one product term to another there is a possibility of
momentary interval when neither term is equal to 1, giving rise to an undesirable output.
The remedy for eliminating hazard is to enclose the two minterms with another product term
that overlaps both groupings.

The covering the hazard causing the transition with a redundant product term
(AD) will eliminate the hazard. The K-Map of the hazard-free circuit will be as shown
in Fig. 4.57.

00 01 11 10
AB

D

0

1

0

0

0 0 1

111

BD

AB

AD

Fig. 4.57 K-Map of the hazard-free circuit

Therefore, the hazard free Boolean equation is % �� �� ��= + + .

The Fig. 4.58 shows the hazard free realization of circuit shown in Fig. 4.55.

COMBINATIONAL LOGIC 177

Q

A

B

D

Fig. 4.58 Hazard free circuit

Now, we will discuss elimination of static hazards with examples.

Eliminating a static-1 hazard
Let the example circuit is & �� ��= + . The K-map of the circuit is given in Fig. 4.59.

00 01 11 10
AB

CD

00

01

0

1

0 1 1

111

11 1 1 0 0

10 0 000

A

C

D

B

Fig. 4.59 K-Map of the example circuit

By inspecting Karnaugh Map of the required function, we notice the following points.

• Input change within product term (ABCD = 1100 to 1101)

• Input change that spans product terms (ABCD = 1101 to 0101)

• Glitch only possible when move between product terms.

00 01 11 10
AB

CD

00

01

0

1

0 1 1

111

11 1 1 0 0

10 0 000

A

C

D

B
From above three points it is clear that addition of redundant prime implicants so that

all movements between adjacent on-squares remains in a prime implicant will remove
hazard.

178 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

00 01 11 10
AB

CD

00

01

0

1

0 1 1

111

11 1 1 0 0

10 0 000

A

C

D

B
Fig. 4.60 K-Map of the hazards free circuit

Therefore, & �� ��= + becomes & �� �� ��= + + .

Note that when a circuit is implemented in sum of products with AND-OR gates or with
NAND gates, the removal of static-1 hazard guarantees that no static-0 hazards or dynamic
hazards will occur.

Eliminating a static-0 hazard
Let the example circuit is &
� ��
� ���= + + The K-Map of the circuit is given in Fig. 4.61.

00 01 11 10
AB

CD

00

01

0

1

0 1 1

111

11 1 1 0 0

10 0 000

A

C

D

B
Fig. 4.61 K-Map of the example circuit

By inspecting Karnaugh Map of the required function, we see that occurrence of static-
0 hazard from ABCD = 11 10 to 0110. It can be remove by adding the term
� ���+

4.3.4 Essential Hazard
Similar to static and dynamic hazards in combinational circuits, essential hazards occur

in sequential circuits. Essential hazards is a type of hazard that exists only in asynchronous
sequential circuits with two or more feedbacks. Essential hazard occurs normally in toggling
type circuits. It is an error generally caused by an excessive delay to a feedback variable in
response to an input change, leading to a transition to an improper state. For example, an
excessive delay through an inverter circuit in comparison to the delay associated with the
feedback path may cause essential hazard. Such hazards cannot be eliminated by adding
redundant gates as in static hazards. To avoid essential hazard, each feedback loop must be
designed with extra care to ensure that the delay in the feedback path is long enough
compared to the delay of other signals that originate from the input terminals.

COMBINATIONAL LOGIC 179

4.3.5 Significance of Hazards
A glitch in an asynchronous sequential circuit can cause the circuit to enter an incorrect

stable state. Therefore, the circuity that generates the next-state variables must be hazard
free. It is sufficient to eliminate hazards due to changes in the value of a single variable
because the basic premise in an asynchronous sequential circuit is that the values of both the
primary inputs and the state variables must change one at a time.

In synchronous sequential circuits the input signal must be stable within the setup and
hold times of flip-flops. It does not matter whether glitches (spikes) occur outside the setup
and hold times with respect to the clock signal.

In combinational circuits, there is no effect of hazards, because the output of a circuit
depends solely on the values of the inputs.

4.4 EXERCISE
1. Develop a minimized Boolean implementation of a “ones count” circuit that works as

follows. The subsystem has four binary inputs A, B, C, D and generates a 3-bit output, XYZ,
XYZ is 000 if none of the inputs are 1, 001 if one input is 1,010 if two are one, 011 if three
inputs are 1, and 100 if all four inputs are 1.

(a) Draw the truth tables for XYZ (A, B, C, D).

(b) Minimize the functions X, Y, Z, using 4-variable K-maps. Write down the Boolean
expressions for the minimized Sum of Products form of each function.

(c) Repeat the minimization process, this time deriving Product of Sums form.

2. Consider a combinational logic subsystem that performs a two-bit addition function. It
has two 2-bit inputs A B and C D, and forms the 3-bit sum X Y Z.

(a) Draw the truth tables for XYZ (A, B, C, D).

(b) Minimize the functions using 4-variable K-maps to derive minimized Sum of Prod-
ucts forms.

(c) What is the relative performance to compute the resulting sum bits of the 2-bit
adder compared to two full adders connected together? (Hint: which has the worst
delay in terms of gates to pass through between the inputs and the final outputs,
and how many gates is this?).

3 Show how to implement the full adder Sum (A, B, C in) and Carry (A, B, C in) in terms
of:

(a) Two 8 : 1 multiplexers;

(b) Two 4 : 1 multiplexers;

(c) If you are limited to 2:1 multiplexers (and inverters) only, how would you use them
to implement the full adder and how many 2:1 multiplexers would you need?

4. Design a combinational logic subsystem with three inputs, 13, 12, 11, and two outputs,
01, 01, that behaves as follows. The outputs indicate the highest index of the inputs that is
driven high. For example, if 13 is 0, 12 is 1, 11 is 1, then 01, 00 would be (10 (i.e. 12 is the
highest input set to 1).

(a) Specify the function by filling out a complete truth table.

(b) Develop the minimized gate-level implementation using the K-map method.

180 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(c) Develop an implementation using two 4 : 1 multiplexers.

(d) Compare your implementation for (b) and (c). Which is better and under what
criterion?

5. Design a simple combinational subsystem to the following specification. The system
has the ability to pass its inputs directly to its outputs when a control input, S, is not asserted.
It interchanges its inputs when the control inputs S is asserted. For example, given four
inputs A, B, C, D and four outputs W, X, Y, Z when S = 0, WXYZ = ACD and when S = 1,
WXYZ = BCDA. Show how to implement this functionality using building blocks that are
restricted to be 2 :1 multiplexers and 2 : 1 demultiplexers.

6. Your task is to design a combinational logic subsystem to decode a hexadecimal digit
in the range of 0 through 9. A through F to drive a seven segment display. The hexadecimal
numerals are as follows :

Design a minimized implementation in PLA form. That is, look for common terms among
the seven output functions.

7. Determine number of days in a month (to control watch display) used in controlling
the display of a wrist-watch LCD screen.

Inputs : month, leap your flag.

Outputs : number of days.

8. Consider the following functions, which are five different functions over the inputs A,
B, C, D.

(1) F (A, B, C,) = Σm (1, 2, 6, 7)

(2) F (A, B,C,D) = Σm (0, 1, 3, 9, 11, 12, 14, 15)

(3) F' (A, B, C, D) = Σm (2, 4, 5, 6, 7, 8, 10, 13)

(4) F (A, B, C, D) = (ABC + A'B') (C+D)

(5) F (A, B, C, D) = (A + B + C) (A + B + C' + D) (A + B' + C + D') (A' + B')

(a) Implement these in a single PLA structure with four inputs, five outputs, and an
unlimited number of product terms, how many unique product terms are there in
this PLA implementation.

(b) If you are trying to maximize the number of shared product terms across the five
functions, rather than minimizing the literal count for each function independently,
how many unique terms do you obtain? Draw the new K-maps with your selection
of implicants that minimizes the number of unique terms across all five functions.

9. Consider the following Boolean function in Product of Sums form :

F (A, B, C, D) = (A + B' + D) (A' + B' +D) (B' + C' + D') (A' + C + D) (A' + C' + D)

Show how to implement this function with an 8 : 1 multiplexer, with A, B, C on the
control inputs and D, its complement, and the constants 0 and 1 available as data inputs.

10. Design a two-bit comparator with the following inputs and outputs:

Inputs : Numbers N1 and N2 to be compared.

COMBINATIONAL LOGIC 181

N1 = AB

N2 = CD.

Outputs : LT, GT, EQ

LT = 1 when AB < CD

GT = 1 when AB > CD

EQ = 1 when AB = CD

11. Design a 2X2 bit multiplier :

Inputs : Numbers N1 and N2 to be multiplied

N1 = A1 A0

N2 = B1 B0

Outputs ; products : P8, P4, P2, P0

P0 = Product with weighting 2 0 = 1

P2 = Product with weighting 21 = 2

P4 = Product with weighting 22 = 4

P8 = Product with weighting 23 = 8.

12. Analyse the behaviour of the Circuit below when input A changes from one logic state
to another.

A B C D
F

13. Analyse the circuit below for static hazard.

A
S

B

S�
14. Analyse the pulse shaping circuit below:

A

C

B

D

Open
switch

+

15. Which of the components below cab be used to build an inverter?

182 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

16. Consider the equation :

Z = A'B'C'D + A'B' CD' + A'BC' D' + A' BCD + ABC'D + ABCD' + AB'C'D' + AB'CD.

Implement this using 2-1 multiplexers.

17. Use a 8-input multiplexer to generate the function

� �� �� �� ��= + + +
18. Implement the following function with an multiplexer.

� �= Σ
 � � � � � � �� � � � �� �� ��

19. Design a 32:1 multiplexer using two 16:1 multiplexers.

20. Implement a 64 output demultiplexer tree using 1 × 4 DEMUX.

21. Realize the following functions of four variables using

(i) 8 : 1 multiplexers (ii) 16 : 1 multiplexers.

22. Design a BCD-to Gray code converter using

(i) 8:1 mutlplexers (ii) dual 4 : 1 multiplexers and some gates.

23. Design a Gray-to-BCD code converter using

(i) two dual 4 : 1 multiplexers and some gates.

(ii) one 1 : 16 demultiplexer and NAND gates.

24. Design a 40:1 multiplexer using 8 : 1 multiplexers.

25. Implement the following combinational logic circuit using a 4 to 16 line decoder.

Y1 = Σm (2, 3, 9)

Y2 = Σm (10, 12, 13)

Y3 = Σm (2, 4, 8)

Y4 = Σm (1, 2, 4, 7, 10, 12)

5.0 INTRODUCTION
Digital circuit construction with small-scale integrated (SSI) and medium-scale integrated

(MSI) logic has long been a basis of introductory digital logic design (refer chap. 3). In recent
times, designs using complex programmable logic such as programmable array logic (PLA)
chips and field programmable gate arrays (FPGAs) have begun replacing these digital circuits.

This chapter deals with devices that can be programmed to realize specified logical
functions. Since evolution of programmable logic devices (PLDs) started with programmable
ROM, it introduces ROMs and show how they can be used as a universal logic device and how
simple programmable logic devices can be derived from ROMs. It also gives an overview of
Complex Programmable Logic Devices (CPLDs) and Field Programmable Gate Arrays (FPGAs).

5.1 READ ONLY MEMORY (ROM)
A Read Only Memory (ROM) as shown in Fig. 5.1 is a matrix of data that is accessed one

row at a time. It consists of k input lines and n output lines. Each bit combination of output
lines is called a word while each bit combination of input variables is called an address. The
number of bits per word is equal to the number of output lines n. A ROM is describe by the
number of words 2k, the number of bits per word n.

The A inputs are address lines used to select one row (called a word) of the matrix for
access. If A = i, then row i is selected and its data appears on the output terminals D. In this
case we say that the contents of row i are read from the memory.

ROMA0

A1

Ak–1

Dn–1 D1 D0

Fig. 5.1

If there are k address lines, then there are 2k words in the ROM .The number of bits
per word is called the word size. The data values of the words are called the contents of

183

C
H

A
P

T
E

R 5
PROGRAMMABLE LOGIC DEVICES

184 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

the memory and are said to be stored in the memory. The term read only refers to the
property that once data is stored in a ROM, either it cannot be changed, or it is not changed
very often.

ROM can be viewed as a combinational circuit with AND gates connected as a decoder
and number of OR gates equal to the number of outputs. Internally a ROM contains a decoder
and a storage array as shown in the Fig. 5.2.

Decoder
A0

A1

Ak–1

m0

m k2 –1

Dn–1 D1 D0

m1

0 0 1

1 1 0

0 1 1

Fig. 5.2

When the address is i, the ith output of the decoder mi is activated selecting row i of
the data array. Functionally the data array can be viewed as a programmable OR array. Each
column acts as a stack of OR gates as shown in the Fig. 5.3.

m0

m1

Dn–1 D1 D0

m k2 –1

Fig. 5.3

Depending on the stored value (0/1)switch is open or closed. If a 0 is stored in a row, the
switch is open and if a 1 is stored, the switch is closed. The type of ROM is determined by
the way the switches are set or reset (i.e., programmed).

(I) Mask programmed ROMs: In the mask programmed ROMs, switch is realized at the
time the ROM is manufactured. Either a connection is made by putting in a wire, or the
connection is left open by not putting in a wire.

(II) Field programmable ROMs (PROMs): In the field programmable ROMs, switch is
realized by a fuse. When the ROM is manufactured all switches are closed since all the fuses
are intact. To open a switch the fuse is blown by sending a larger than usual current through
it. Once a fuse is blown, it cannot be reinstalled.

(III) Erasable ROMs (EPROMs): In the erasable ROMs switch is realized by a special kind
of fuse that can be restored to its usual closed state, usually by the insertion of extra energy
(e.g., shining ultraviolet light on the fuse). All fuses are reset when this is done.

(IV) Electrically Programmable ROMs (EPROMs): In the electrically programmable ROMs
fuses are reset by the application of larger than usual currents. Sometimes subsections of the
ROM can be reset without resetting all fuses.

PROGRAMMABLE LOGIC DEVICES 185

Consider a 32×8 ROM as shown in Fig. 5.4. The ROM consists of 32 words of bit size 8.
That is, there are 32 distinct words stored which may be available through eight output lines.
The five inputs are decoded into 32 lines and each output of the decoder represents one of the
minterms of a function of five variables. Each one of the 32 addresses selects only one output
from the decoder. The 32 outputs of the decoder are connected through links to each OR gate.

0
1
2
3
.
.
.

28
29
30
31

D7 D6 D5 D4 D3 D2 D1 D0

5 × 32
decoder

A0

A1

A2

A3

A4

Fig. 5.4

5.1.1 Realizing Logical Functions with ROM
The ROM is a two-level implementation in sum of minterms form. ROMs with k address

lines and n data terminals can be used to realize any n logical functions of k variables. For
this one have to simply store the truth table for each function in a column of the ROM data
array. The advantage of implementing logical functions by means of some form of program-
mable ROM, we have the possibility of reconfigurable logic. That is, the same hardware being
reprogrammed to realize different logic at different times. But the disadvantage of using large
ROMs to realize logical functions is that, the ROMs are much slower than gate realizations
of the functions. The following example explains the procedure for realizing logical functions.

Example 1. Design a combinational circuit using a ROM that accepts a 2-bit number and
generates an output binary number equal to the square of the input number.

Step 1: Derive the truth table for the combinational circuit. For the given example the
truth table is

Table 5.1

Inputs Outputs Equivalent decimal

A1 A0 B3 B2 B1 B0

0 0 0 0 0 0 0

0 1 0 0 0 1 1

1 0 0 1 0 0 4

1 1 1 0 0 1 9

Step 2: If possible, reduce the truth table for the ROM by using certain properties in the
truth table of the combinational circuit. For the given example, two inputs and four outputs
are needed to accommodate all possible numbers.

186 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Since output B0 is always equal to input A0, therefore there is no need to generate B0
with a ROM. Also B1 is known as it is always 0. Therefore we need to generate only two
outputs with the ROM; the other two are easily obtained.

Step 3: Find the minimum size of ROM from step 2.

The minimum size ROM needed must have two inputs and two outputs. Two inputs
specify four word, so the ROM size must be 4×2. The two inputs specify four words of two
bits each. The other two outputs of the combinational circuit are equal to 0 (B1) and A0(B0).

Table 5.2 ROM truth table

A1 A0 B3 B2

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 0

The ROM truth table (Table 5.2) specifies complete information for ROM programming
and the required connections are shown in Fig. 5.5.

4 × 2
ROM

A1

D0D1

A0

0

B2B3 B0B1

Fig. 5.5 Block diagram

Example 2. Show that a 16 × 6 ROM can be used to implement a circuit that generates
the binary square of an input 4-bit number with B0 = A0 and B1 = 0 as shown in figure 5.6(a).
Draw the block diagram of the circuit and specify the first four and last four entries of the
ROM truth table.

Solution. Step 1. Draw the truth table for the combinational circuit. For the given
example the truth table is

Table 5.3

Inputs Outputs Equivalent Decimal

A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0 0 1 0 0 4

0 0 1 1 0 0 0 0 1 0 0 1 9

0 1 0 0 0 0 0 1 0 0 0 0 16

PROGRAMMABLE LOGIC DEVICES 187

0 1 0 1 0 0 0 1 1 0 0 1 25

0 1 1 0 0 0 1 0 0 1 0 0 36

0 1 1 1 0 0 1 1 0 0 0 1 49

1 0 0 0 0 1 0 0 0 0 0 0 64

1 0 0 1 0 1 0 1 0 0 0 1 81

1 0 1 0 0 1 1 0 0 1 0 0 100

1 0 1 1 0 1 1 1 1 0 0 1 121

1 1 0 0 1 0 0 1 0 0 0 0 144

1 1 0 1 1 0 1 0 1 0 0 1 169

1 1 1 0 1 1 0 0 0 1 0 0 196

1 1 1 1 1 1 1 0 0 0 0 1 225

Step 2. If possible, reduce the truth table for the ROM by using certain properties in the
truth table of the combinational circuit. For the given example, four inputs and eight outputs
are needed to accommodate all possible numbers.

Since, B0 = A0 and B1 = 0 as shown from truth table in step 1. We need only six outputs
to generate with the ROM; the other two are easily obtained.

Step 3. Find the minimum size of ROM from step 2. The minimum size of ROM needed
must have four inputs and six outputs. Four inputs specify sixteen word so the ROM size
must be 16 × 6. The block diagram of the circuit and first four and last four entries of the
ROM truth table is shown in Fig. 5.6.

16 × 6 ROM

A1

D0D1

A0

0

B2B3 B0B1

D2

B4

D3

B5

D4

B6

D5

B7

A2A3

Fig. 5.6 (a) Block diagram

A3 A2 A1 A0 D5 D4 D3 D2 D1 D0

0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
1

0
0
1
0

0
1
2
3

1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

1
1
1
1

0
0
1
1

0
1
0
1

1
0
0
0

0
1
0
0

0
0
1
0

12
13
14
15

ROM truth table

Fig. 5.6 (b) ROM truth table

188 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Example 3. For the function

F1 = Σ(0, 2, 5, 6)

F2 = Σ(0, 2, 4, 6, 7)

F3 = Σ(0, 2, 4, 7)

F0 = Σ(1, 2, 3, 5, 7)

Design a three bit addressable ROM.

Solution. From truth table, the minimum size of ROM needed having three inputs and
four outputs. Three inputs specify 23 = 8 word so the ROM size must be 8 × 4.

Table 5.4

Minterms Inputs Outputs

A2 A1 A0 F3 F2 F1 F0

0 0 0 0 1 1 1 0

1 0 0 1 0 0 0 1

2 0 1 0 1 1 1 1

3 0 1 1 0 0 0 1

4 1 0 0 1 1 0 0

5 1 0 1 0 0 1 1

6 1 1 0 0 1 1 0

7 1 1 1 1 1 0 1

The implementation of functions are given in Fig. 5.7.

0
1
2
3
4
5
6
7

F3 F2 F1 F0

3 × 8
decoder

A0

A1

A2

m0
m
m
m
m
m
m
m

1
2
3
4
5
6
7

Fig. 5.7

Example 4. A ROM is to be used to implement the Boolean functions given below:

F1 (A, B, C, D) = ABCD + � � � �

F2 (A, B, C, D) = (A + B) �� � ��+ +

F3 (A, B, C, D) = Σ13, 15 + Σ3, 5

(a) What is the minimum size of the ROM required?

(b) Determine the data in each location of the ROM.

PROGRAMMABLE LOGIC DEVICES 189

Solution. (a) F1 (A, B, C, D) = ABCD + � � � �

F2 (A, B, C, D) = (A + B) �� � ��+ +

= ��� � ���� � ���� � ���� � ���� � ���

= ��� � ���� � ���� � ���

F3 (A, B, C, D) = Σ(13, 15) + Σ(3, 5)

To simplify F3 (using K-Map).

CD
AB CD CD CD CD

0

4

12

8

1

5

13

9

3

7

15

11

2

6

14

10

AB

AB

AB

AB

1 1

F3 (A, B, C, D) = ABD

Table 5.5 Truth table of ROM

Inputs Outputs

A B C D F3 F2 F1

0 0 0 0 1

0 0 0 1 -

0 0 1 0 -

0 0 1 1 -

0 1 0 0 1 -

0 1 0 1 1 -

0 1 1 0 1 -

0 1 1 1 1 -

1 0 0 0 1 -

1 0 0 1 1 -

1 0 1 0 1 -

1 0 1 1 1 -

1 1 0 0 -

1 1 0 1 1 -

1 1 1 0 1 -

1 1 1 1 1 1 1

The size of the ROM required is 4 inputs and 3 outputs. So, the ROM size is 24 = 16 × 3.
The four inputs specify 16 words of 3-bit each.

(b) The data in each location of the ROM is given by F1, F2, F3 as in truth table.

190 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

5.2 PROGRAMMABLE LOGIC ARRAYS
The first type of user-programmable chip that could implement logic circuits was the

Programmable Read-Only Memory (PROM), in which address lines can be used as logic circuit
inputs and data lines as outputs. Fig. 5.8 shows the basic configuration of PROM.

Inputs
Fixed

AND array
(decoder)

Programmable
OR array Outputs

Fig. 5.8 Basic configuration of programmable read-only memory (PROM)

Logic functions, however, rarely require more than a few product terms, and a PROM
contains a full decoder for its address inputs. PROMs are thus an inefficient architecture for
realizing logic circuits, and so are rarely used in practice for that purpose. The first device
developed later specifically for implementing logic circuits was the Field-Programmable Logic
Array (FPLA), or simply PLA for short. A PLA consists of two levels of logic gates: a program-
mable “wired” AND-plane followed by a programmable “wired” OR-plane.

Inputs Programmable
OR array OutputsProgrammable

AND array

Fig. 5.9 Basic configuration of programmable logic array (PLA)

A PLA is structured so that any of its inputs (or their complements) can be AND’ed
together in the AND-plane; each AND-plane output can thus correspond to any product term
of the inputs. Similarly, each OR plane output can be configured to produce the logical sum of
any of the AND-plane outputs. With this structure, PLAs are well-suited for implementing logic
functions in sum-of-products form. They are also quite versatile, since both the AND terms and
OR terms can have many inputs (this feature is often referred to as wide AND and OR gates).

Programmable Logic Arrays (PLAs) have the
same programmable OR array as a ROM, but also
have a programmable AND array instead of the de-
coder as shown in Fig. 5.10. The programmable AND
array can be used to produce arbitrary product terms,
not just minterms. While the decoder produces all
minterms of k variables.

Since, the number of possible product terms
m in PLA is much less than the number of possible
minterms 2k, so some functions may not be real-
izable in PLA.

The structure of a row of the programmable AND array is shown in Fig. 5.11 (a).

Xk X1 X0

pi1

Fig. 5.11 (a)

AND
ARRAY

(programmable)

Xk

p0

pm

Yn–1 Y1 Y0

p1

X1 X0

OR
ARRAY

(programmable)

Fig. 5.10

PROGRAMMABLE LOGIC DEVICES 191

and of a column of the programmable OR array is shown in
Fig. 5.11 (b).

While the notation of a PLA is shown in Fig. 5.12.

Xk X1 X0

p0

p1

pn1

(Programmable
OR Array

)

Yn–1 Y1 Y0

AND Array
(programmable)

Outputs
Fig. 5.12

5.2.1 Realizing Logical Functions with PLAs
During implementation (or programming) a dot (or cross) is placed at an intersection if

the variable is to be included in the product term or to sum term. For example a PLA with
3 inputs, 4 product terms and 2 outputs is shown in Fig. 5.13.

Fig. 5.13

Fig. 5.11 (b)

192 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

From the exclusive OR operation, we know when one of the input is low the output is
same as the other input and when one of the input is high the output is the complement of
the other input. (Fig. 5.14).

Control input C
Other input X Y = CX + C X��

Therefore, if C = 0, Y = X

C = 1, Y = X′
Fig. 5.14

In PLA, the output is present in true form as well as in complement form. In Fig. 5.13,
Y1 is in true form while output Y2 is complemented.

When realizing (designing) a digital system with a PLA, there is no need to show the
internal connections as in Fig. 5.13. The PLA can be programmed with PLA program table
which provides appropriate paths.

PLA Program Table
A typical program table consists of three columns. The first column lists the product

terms numerically. The second column specifies the required paths between inputs and AND
gates. The third column specifies the paths between the AND gates and the OR gates. Under
each output variable we write a T (for true) if the output is in true form and C (for comple-
ment) if the output is to be complement. For each product term, the inputs are marked as
1, 0 or – (dash). A variable in product term is marked as 1 if it appears in normal form, 0
if it is in complemented form and ‘–’ shows that a variable is not present.

In PLA implementation of combinational circuits the total number of distinct product
terms must be reduce by simplifying each function to a minimum number of terms.

Example 1. Implement the following functions using 3-input, 3 product terms and 2
output PLA.

F1 = AB' + AC = Σ(4, 5, 7)

F2 = AC + BC = Σ(3, 5, 7)

Solution. Step 1. Derive the truth table for the combinational circuit.

Table 5.6

Inputs Outputs

A B C F2 F1

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

PROGRAMMABLE LOGIC DEVICES 193

Step 2. Simplify functions using K-map.

BC
A BC
A

A 1 1 1

BC BC BC

For F1

F1 = AB + AC�

BC
A BC
A

A

1

1 1

BC BC BC

For F2

F2 = AC + BC

Step 3. Draw the PLA program table.

Table 5.7

Product term Inputs Outputs

A B C F2 F1

AB' 1 1 0 - - 1

AC 2 1 - 1 1 1

BC 3 - 1 1 1 -

T T T/C

Step 4. Draw the logic diagram (Fig. 5.15)

A

B

C

Inputs

AB�

AC
BC

OR
matrix (Array)

F (A, B, C)1

F (A, B, C)2
Output

C C� B B� A A�

AND matrix
(Array)

Fig. 5.15

For the implementation with PLA, the PLA program table is necessary and sufficient.
Step 4 shows the logic diagram is only to show how PLA is implemented using AND array
and OR array. Step 4 is optional.

Example 2. Implement the following function using PLA.

F1(A, B, C) = Σ(0, 1, 6, 7)

F2(A, B, C) = Σ(1, 2, 4, 6)

194 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

F3(A, B, C) = Σ(2, 6)

Solution. Derive the truth table for the combinational circuit as shown in table 5.8.

Table 5.8

Inputs Outputs

A B C F3 F2 F1

0 0 0 0 0 1

0 0 1 0 1 1

0 1 0 1 1 0

0 1 1 0 0 0

1 0 0 0 1 0

1 0 1 0 0 0

1 1 0 1 1 1

1 1 1 0 0 1

Simplify functions using K-map

BC
A BC
A

A

1 1

BC BC BC

For F1

F1 � �= AB + A B

BC
A

1

1

For F2

F2 � � � �= A B C + AC + BC

1 1

1

1

BC
A

For F3

F3 �= BC

1

1

Draw the PLA program table.

Table 5.9

Product term Inputs Outputs

A B C F3 F2 F1

1 0 0 1 - 1 -

2 1 - 0 - 1 -

3 - 1 0 1 1 -

4 0 0 - - - 1

5 1 1 - - - 1

T T T T/C

Example 3. Implement the following with PLA.
P1 = A' • C'
P2 = A' • C
P3 = A • B'
P4 = A • B • C
X = P3 = A • B'

PROGRAMMABLE LOGIC DEVICES 195

Y = P2 + P4 = A' • C + A • B • C
Z = P1 + P3 = A' • C' + A • B'

A B C

P1

P2

P3

P4

X Y Z

Fig. 5.16

Note: In this implementation, dot is placed at intersection but cross can be used for
the same.

5.3 PROGRAMMABLE ARRAY LOGIC (PAL)
When PLAs were introduced in the early 1970s, by Phillips, their main drawbacks are

that they are expensive to manufacture and offered poor speed-performance. Both disadvan-
tages are due to the two levels of configurable logic, because programmable logic planes were
difficult to manufacture and introduced significant propagation delays. To overcome these
weaknesses, Programmable Array Logic (PAL) devices are developed. As Fig. 5.17 (a) illus-
trates, PALs feature only a single level of programmability, consisting of a programmable
“wired” AND plane that feeds fixed OR-gates.

Inputs Programmable
AND array

Fixed
OR array Outputs

Fig. 5.17 (a) Basic configuration of programmable array logic (PAL)

To compensate for lack of generality incurred because the OR Outputs plane is fixed,
several variants of PALs are produced, with different numbers of inputs and outputs, and
various sizes of OR-gates. PALs usually contain flip-flops connected to the OR-gate outputs
so that sequential circuits can be realized. PAL devices are important because when
introduced they had a profound effect on digital hardware design, and also they are the
basis for more sophisticated architectures. Variants of the basic PAL architecture are
featured in several other products known by different acronyms. All small PLDs, including
PLAs, PALs, and PAL-like devices are grouped into a single category called simple PLDs
(SPLDs), whose most important characteristics are low cost and very high pin-to-pin
speed-performance.

While the ROM has a fixed AND array and a programmable OR array, the PAL has a
programmable AND array and a fixed OR array. The main advantage of the PAL over the PLA
and the ROM is that it is faster and easier to fabricate.

Fig. 5.17 (b) represents a segment of an unprogrammed PAL.

196 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

I2

I1

F1

F4

F2F3

F5

F8

Output

fuse

Fig. 5.17 (b) PAL segment

The symbol

Non-inverted output

Inverted output

Represents an input buffer which is logically equivalent to

A buffer is used because each PAL input
have to drive many AND gate inputs. When
the PAL is programmed, the fusible links
(F1, F2, F8) are selectively blown to leave
the desired connection to the AND gate in-
puts. Connections to the AND gate inputs in
a PAL are represented by X’s as shown

Fig. 5.17 (c) shows the use of PAL segment of Fig. 5.17 (b) to realize the function
I1I2′ + I1′I2. The X’s indicate that the I1 and I2′ lines are connected to the first AND gate,
and the I1′, and I2 lines are connected to the other gate

× ×

××

I1

I2

I I + I I1 2 1 2� �

Fig. 5.17 (c) Programmed PAL example

In early PALs, only seven product terms could be summed into an OR gate. Therefore,
not all functions could be realized with these PLAs. Also, the output was inverted in these
early PALs so that what was really realized is

A
B
C

ABC × × ×

A B C

ABC

PROGRAMMABLE LOGIC DEVICES 197

(P1 + P2 + . . . + P7)′ = P1′ • P2′ • . . . • P7′
Example of first-generation PAL is PAL 16L8 having following features.

• 10 input, 2 complemented outputs, 6 I/O pins
• Programmable (one AND term) 3-state outputs
• Seven product terms per output
• 20 pin chip
• 10 input (14 for 20V8)

A sum of products function with a small number of product terms may require a large
number product terms when realized with a PAL.

For example: To implement the function Z = A • B • C + D • E • F
The inverted output of the function Z' is given as

Z′ = (A • B • C)' • (D • E • F)' = (A' + B' + C') • (D' + E' + F')
= A' • D' + A' • E' + A' • F'+ B' • D' + B' • E' + B' • F'

+ C' • D' + C' • E' + C' • F'
= p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9

This has nine product terms and could not be realized in one pass with the early PALs.
The only way to realize the this function in a PAL is to use two passes as shown in

Fig. 5.18.

Fig. 5.18

5.3.1 Commercially Available SPLDs
For digital hardware designers for the past two decades, SPLDs are very important

devices. SPLDs represent the highest speed-performance FPDs available, and are inexpen-
sive. They are also straightforward and well understood.

Two of the most popular SPLDs are the PALs produced by Advanced Micro Devices
(AMD) known as the 16R8 and 22V10. Both of these devices are industry standards and are
widely second-sourced by various companies. The name “16R8” means that the PAL has a
maximum of 16 inputs (there are 8 dedicated inputs and 8 input/outputs), and a maximum
of 8 outputs. The “R” refers to the type of outputs provided by the PAL and means that each
output is “registered” by a D flip-flop. Similarly, the “22V10” has a maximum of 22 inputs and
10 outputs. Here, the “V” means each output is “versatile” and can be configured in various
ways, some configurations registered and some not.

198 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Another widely used and second sourced SPLD is the Altera Classic EP610. This device
is similar in complexity to PALs, but it offers more flexibility in the way that outputs are
produced and has larger AND- and OR-planes. In the EP610, outputs can be registered and
the flip-flops are configurable as any of D, T, JK, or SR.

In addition to the SPLDs mentioned above many other products are commercial avail-
able. All SPLDs share common characteristics, like some sort of logic planes (AND, OR, NOR,
or NAND), but each specific product offers unique features that may be particularly suitable
for some applications.

5.3.2 Generic Array Logic (GAL)
Generic Array Logic (GAL) is a programmable logic device that can be configured to

emulate many earlier PLDs including those with internal flip-flops. GAL 16V8C and 20V8C
are examples of Generic Array Logic. The only difference between the two is that the 16V8
is a 20-pin chip and the 20V8 is a 24-pin chip, which uses the extra pins for inputs. The
characteristics of these devices are:

• 10 input (14 for 20V8)
• Programmable (one AND term) 3-state outputs
• Seven or eight product terms per output
• Programmable output polarity

• Realize either true or complemented output signal
• Realize either POS or SOP directly

When using GAL as a combinational device, All outputs can be programmed to one of
the following three configurations except that the two end outputs have some minor limita-
tions as illustrated by Fig. 5.19.

Bidirectional I/O

Dedicated Output

1

Dedicated Input

0

I/o

Output

Input

Fig. 5.19

PROGRAMMABLE LOGIC DEVICES 199

For example, GAL 22V10C is a 24-pin chip having 12 input terminals and 10 input/output
terminals. Among outputs, two of the outputs can have up to 8 product terms, two have 10,
two have 12, two have 14 and two have 16, except the output buffer control.

The combinational configurations for GAL 22V10C is

I/o

5.3.3 Applications of PLDs
PLDs are often used for address decoding, where they have several clear advantages over

the 7400-series TTL parts that they replaced. First, of course, is that one chip requires less
board area, power, and wiring than several do. Another advantage is that the design inside
the chip is flexible, so a change in the logic doesn’t require any rewiring of the board. Rather,
the decoding logic can be altered by simply replacing that one PLD with another part that
has been programmed with the new design.

5.4 COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD)
As technology has advanced, it has become possible to produce devices with higher

capacity than SPLDs (PALs). The difficulty with increasing capacity of a strict SPLD archi-
tecture is that the structure of the programmable logic-planes grows too quickly in size as
the number of inputs is increased. It also significantly slows the chip down due to long rows
of AND gates. The only feasible way to provide large capacity devices based on SPLD
architectures is then to integrate multiple SPLDs onto a single chip, and are referred to as
complex PLDs (CPLDs) as shown in Fig. 5.20.

Fig. 5.20 (a)

200 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

PAL-like block (details not shown)

D Q

D Q

D Q

Fig. 5.20 (b)

5.4.1 Applications of CPLDs
Because CPLDs offer high speeds and a range of capacities, they are useful for a very

wide range of applications, from implementing random glue logic to prototyping small gate
arrays. One of the most common uses in industry at this time, and a strong reason for the
large growth of the CPLD market, is the conversion of designs that consist of multiple SPLDs
into a smaller number of CPLDs.

CPLDs can realize reasonably complex designs, such as graphics controller, LAN control-
lers, UARTs, cache control, and many others. As a general rule-of-thumb, circuits that can
exploit wide AND/OR gates, and do not need a very large number of flip-flops are good
candidates for implementation in CPLDs. A significant advantage of CPLDs is that they
provide simple design changes through re-programming (all commercial CPLD products are
re-programmable). With programmable CPLDs it is even possible to re-configure hardware
(an example might be to change a protocol for a communications circuit) without power-down.

Designs often partition naturally into the SPLD-like blocks in a CPLD. The result is
more predictable speed-performance than would be the case if a design were split into many
small pieces and then those pieces were mapped into different areas of the chip. Predictability
of circuit implementation is one of the strongest advantages of CPLD architectures.

5.5 FIELD-PROGRAMMABLE GATE ARRAYS (FPGA)
Field Programmable Gate Arrays (FPGAs) are flexible, programmable devices with a

broad range of capabilities. Their basic structure consists of an array of universal, program-

PROGRAMMABLE LOGIC DEVICES 201

mable logic cells embedded in a configurable connection matrix. There are three key parts
of FPGA structure: logic blocks, interconnect, and I/O blocks. The I/O blocks form a ring around
the outer edge of the part. Each of these provides individually selectable input, output, or bi-
directional access to one of the general-purpose I/O pins on the exterior of the FPGA package.
Inside the ring of I/O blocks lies a rectangular array of logic blocks. And connecting logic blocks
to logic blocks and I/O blocks to logic blocks is the programmable interconnect wiring.

In FPGAs, CPLD’s PLDs are replaced with a much smaller logic block. The logic blocks
in an FPGA are generally nothing more than a couple of logic gates or a look-up table and
a flip-flop. The FPGAs use a more flexible and faster interconnection structure than the
CPLDs. In the FPGAs, the logic blocks are embedded in a mesh or wires that have programm-
able interconnect points that can be used to connect two wires together or a wire to a logic
block as shown in Fig. 5.21.

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Configurable
Logic

Block (CLB)

I/O Block

Configurable
Logic

Block (CLB)

I/O Block

I/O
 B

lo
ck

Configurable
Logic

Block (CLB)

Configurable
Logic

Block (CLB)I/O
 B

lo
ck

I/O Pins

Fig. 5.21 Fig. 5.22

There are several architectures for FPGAs
available but the two popular architectures are that,
used by Xilinx and Altera. The Xilinx chips utilize
an “island-type” architecture, where logic functions
are broken up into small islands of 4–6 term arbi-
trary functions, and connections between these
islands are computed. Fig. 5.22 illustrates the ba-
sic structure of the Xilinx FPGA. Altera’s architec-
ture ties the chip inputs and outputs more closely
to the logic blocks, as shown in Fig. 5.23. This
architecture places the logic blocks around one
central, highly connected routing array.

The circuits used to implement combina-
tional logic in logic blocks are called lookup
tables (LUT). For example the LUT in the Xilinx
XC4000 uses three ROMs to realize the LUTs
and generate the following classes of logical
functions:

Logic
Array
Block

(LAB)

Logic
Array
Block

(LAB)

Logic
Array
Block

(LAB)

Programmable
Interconnection

Array

(PIA)

Logic
Array
Block

(LAB)

Logic
Array
Block

(LAB)

Logic
Array
Block

(LAB)

I/O Pins

Fig. 5.23

202 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

• Any two different functions of 4 variables
each plus any other function of 3 variables.

• Any function of 5 variables. How?

• Any function of 4 variables, plus some (but
not all) functions of 6 variables.

• Some (but not all) functions of up to 9 vari-
ables.

The Fig. 5.24 shows the LUT’s structure in Xilinx XC4000. The boxes G and H are
ROMs with 16 1-bit words and H is a ROM with 8 1-bit words. While the structure of LUT’s
in Altera FPGAs are as shown in Fig. 5.25.

 = Program – controlled multiplexer

Fig. 5.25

• Example of programmed FPGA

G

G

H

Fig. 5.24

PROGRAMMABLE LOGIC DEVICES 203

5.5.1 Applications of FPGAs
FPGAs have gained rapid acceptance and growth over the past decade because they can

be applied to a very wide range of applications. A list of typical applications includes: random
logic, integrating multiple SPLDs, device controllers, communication encoding and filtering,
small to medium sized systems with SRAM blocks, and many more.

Other interesting applications of FPGAs are prototyping of designs later to be imple-
mented in gate arrays, and also emulation of entire large hardware systems. The former of
these applications might be possible using only a single large FPGA (which corresponds to a
small Gate Array in terms of capacity), and the latter would involve many FPGAs connected
by some sort of interconnect.

Another promising area for FPGA application, which is only beginning to be developed, is
the usage of FPGAs as custom computing machines. This involves using the programmable
parts to “execute” software, rather than compiling the software for execution on a regular CPU.

5.6 USER-PROGRAMMABLE SWITCH TECHNOLOGIES
The first type of user-programmable switch developed was the fuse used in PLAs. Al-

though fuses are still used in some smaller devices, but for higher density devices, where
CMOS dominates the IC industry, different approaches to implementing programmable switches
have been developed. For CPLDs the main switch technologies (in commercial products) are
floating gate transistors like those used in EPROM and EEPROM, and for FPGAs they are
SRAM and antifuse. Each of these are briefly discussed below.

An EEPROM or EPROM transistor is used as a programmable switch for CPLDs (and
also for many SPLDs) by placing the transistor between two wires in a way that facilitates
implementation of wired-AND functions. This is illustrated in Fig. 5.18, which shows EPROM
transistors as they might be connected in an AND-plane of a CPLD. An input to the AND-
plane can drive a product wire to logic level ‘0’ through an EPROM transistor, if that input
is part of the corresponding product term. For inputs that are not involved for a product term,
the appropriate EPROM transistors are programmed to be permanently turned off. A diagram
for an EEPROM based device would look similar.

+5V

EPROM EPROM

Input wire Input wire

Product wire

Fig. 5.26 EPROM programmable switches

Although there is no technical reason why EPROM or EEPROM could not be applied to

FPGAs, current commercial FPGA products are based either on SRAM or antifuse tech-
nologies, as discussed below.

204 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Fig. 5.27 SRAM-controlled programmable switches

An example of usage of SRAM-controlled switches is illustrated in Fig. 5.27, showing two
applications of SRAM cells: for controlling the gate nodes of pass-transistor switches and to
control the select lines of multiplexers that drive logic block inputs.

The figures gives an example of the connection of one logic block (represented by the
AND-gate in the upper left corner) to another through two pass-transistor switches, and then
a multiplexer, all controlled by SRAM cells. Whether an FPGA uses pass-transistors or
multiplexers or both depends on the particular product.

The other type of programmable switch used in FPGAs is the antifuse. Antifuses are
originally open-circuits and take on low resistance only when programmed. Antifuses are
suitable for FPGAs because they can be built using modified CMOS technology. As an exam-
ple, Actel’s antifuse structure, known as PLICE, is depicted in Fig. 5.28. The Fig. 5.28 shows
that an antifuse is positioned between two interconnect wires and physically consists of three
sandwiched layers: the top and bottom layers are conductors, and the middle layer is an
insulator. When unprogrammed, the insulator isolates the top and bottom layers, but when
programmed the insulator changes to become a low-resistance link. PLICE uses Poly-Si and
n+ diffusion as conductors and ONO as an insulator, but other antifuses rely on metal for
conductors, with amorphous silicon as the middle layer.

Fig. 5.28 Actel antifuse structure

Table lists the most important characteristics of the programming technologies discussed
in this section. The left-most column of the table indicates whether the programmable switches

PROGRAMMABLE LOGIC DEVICES 205

are one-time programmable (OTP), or can be re-programmed (RP). The next column lists
whether the switches are volatile, and the last column names the underlying transistor
technology.

Table 5.10 Summary of Programming Technologies

Name Re-programmable Volatile Technology

Fuse no no Bipolar

EPROM Yes (out of circuit) no UVCMOS

EEPROM Yes (in circuit) no EECMOS

SRAM Yes (in circuit) yes CMOS

Antifuse no no CMOS+

5.7 EXERCISE
1. Realize the following functions using PLA

f1 (A, B, C) = Σ (0, 2, 4, 5)
f2 (A, B, C) = Σ (1, 5, 6, 7)

2. Realize the following functions using PLA
f1 = Σ (1, 2, 3, 5)
f2 = Σ (2, 5, 6, 7)
f3 = Σ (0, 4, 6)

3. What is a PLA? Describe its uses.
4. What is ROM? Describe using block diagram. What size ROM would it take to

implement a binary multiplier that multiplies two 4 bit-numbers.
5. Implement the combinational circuit specified by the truth table given

 Inputs Outputs

A1 A0 F1 F2

0 0 0 1

0 1 1 0

1 0 1 1

1 1 1 0

6. Derive the PLA program table for a combinational circuit that squares a 3-bit
number. Minimize the number of product terms.

7. Implement the problem 6 with the ROM.
8. List the PLA program table for the BCD-to-excess-3 code converter.
9. Write short notes on user programmable switch technologies.

10. Write short notes on following:
(i) ROM (ii) PLA

(iii) PAL (iv) GAL
(v) CPLD (vi) FPGA

206 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

∵

6.0 INTRODUCTION
In the earlier chapters, we studied the digital circuits whose output at any instant of

time are entirely dependent on the input present at that time. Such circuits are called as
combinational circuits on the other hand sequential circuits are those in which the output
at any instant of time is determined by the applied input and past history of these inputs (i.e.
present state). Alternately, sequential circuits are those in which output at any given time
is not only dependent on the input, present at that time but also on previous outputs.
Naturally, such circuits must record the previous outputs. This gives rise to memory. Often,
there are requirements of digital circuits whose output remain unchanged, once set, even if
the inputs are removed. Such devices are referred as “memory elements”, each of which can
hold 1-bit of information. These binary bits can be retained in the memory indefinitely (as
long as power is delivered) or untill new information is feeded to the circuit.

Combinational
Circuit

Memory
Devices

External
Output

External
Input

Clock Input

Fig. 6.1 Block diagram of a sequential circuit

A block diagram of a sequential circuit is shown in Fig. 6.1. A Sequential circuit can
be regarded as a collection of memory elements and combinational circuit, as shown in
Fig. 6.1. A feedback path is formed by using memory elements, input to which is the output
of combinational circuit. The binary information stored in memory element at any given time
is defined as the state of sequential circuit at that time. Present contents of memory
elements is referred as the present state. The combinational circuit receive the signals from
external input and from the memory output and determines the external output. They also
determine the condition and binary values to change the state of memory. The new contents
of the memory elements are referred as next state and depend upon the external input and

206

C
H

A
P

T
E

R 6
SYNCHRONOUS (CLOCKED)

SEQUENTIAL CIRCUITS

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 207

present state. Hence, a sequential circuit can be completely specified by a time sequence of
inputs, outputs and the internal states. In general, clock is used to control the operation. The
clock frequency determines the speed of operation of a sequential circuit.

There exist two main category of sequential circuits, namely synchronous and asynchro-
nous sequential circuits.

A sequential circuit whose behaviour depends upon the sequence in which the inputs are
applied, are called Asynchronous Sequential Circuits. In these circuits, outputs are
affected whenever a change in inputs are detected. Memory elements used in asynchronous
circuits mostly, are time delay devices. The memory capability of time delay devices are due
to the propagation delay of the devices. Propagation delay produced by the logic gates are
sufficient for this purpose. Hence “An Synchronous sequential circuit can be regarded as a
combinational circuit with feedback”. However feedback among logic gates make the
asynchronous sequential circuits, often susceptible to instability. As a result they may become
unstable. This makes the design of asynchronous circuits very tedious and difficult.

A Synchronous Sequential Circuit may be defined as a sequential circuit, whose state
can be affected only at the discrete instants of time. The synchronization is achieved by using
a timing device, termed as System Clock Generator, which generates a periodic train of
clock pulses. The clock pulses are feeded to entire system in such a way that internal states
(i.e. memory contents) are affected only when the clock pulses hit the circuit. A synchronous
sequential circuit that uses clock at the input of memory elements are referred as Clocked
Sequential circuit.

The clocked sequential circuits use a memory element known as Flip-Flop. A flip-flop
is an electronic circuit used to store 1-bit of information, and thus forms a 1-bit memory cell.
These circuits have two outputs, one giving the value of binary bit stored in it and the other
gives the complemented value. In this chapter it is our prime concern to discuss the char-
acteristics of most common types of flip-flops used in digital systems.

The real difference among various flip-flops are the number of inputs and the manner
in which binary information can be entered into it. In the next section we examine the most
general flip-flops used in digital systems.

6.1 FLIP-FLOPS
We have earlier indicated that flip-flops are 1-bit memory cells, that can maintain the

stored bit for desired period of time.

A Bistable device is one in which two well defined states exist, and at any time the
device could assume either of the stable states. A stable state is a state, once reached by
a device does not changes untill and unless something is done to change it. A toggle switch
has two stable states, and can be regarded as a bistable device. When it is closed, it remains
closed (A stable state) untill some one opens it. When it is open, it remains open (2nd stable
state) untill some one closes it i.e. make it to return to its first stable state. So it is evident
that the switch may be viewed as 1-bit memory cell, since it maintains its state (either open
or close). Infact any bistable device may be referred as 1-bit memory cell.

A Flip-Flop may also be defined as a bistable electronics device whose two stable states
are 0V and + 5V corresponding to Logic 0 and Logic 1 respectively. The two stable states and
flip-flop as a memory element is illustrated in Fig. 6.2. Fig. 6.2 (a) shows that the flip-flop
is in ‘State 0’ as output is 0V. This can be regarded as storing Logic 0. Similarly flip-flop is
said to be in ‘State 1’, see Fig. 6.2 (b), when the output is 5 V. This can be regarded as storing

208 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

logic 1. Since at any given time flip-flop is in either of two states the flip-flop may also be
regarded as Bistable Multivibrator. Since the state once reached is maintained untill it is
deliberately changed, the flip-flop is viewed as memory element.

Flip-Flop

0V

Output

+V = 5VCC

(a) State 0 or Low State

Flip-Flop

5V

Output

+V = 5VCC

(b) State 1 or High State

Fig. 6.2 Flip-flop as bistable device

The basic memory circuit or flip-flop can be easily obtained by connecting two inverters
(Not gates) in series and then connecting the output of second inverter to the input of first
inverter through a feedback path, as shown in Fig. 6.3(a).

(a) S

Feedback pathSwitch

V1 V3
BA

V2

(b)
BA

V = 0V1 V3 = 0V

V = 5V2

S

(c)
BA

S

V = 0V1 V = 0V3V = 5V2

(d)
BA

S

V = 5V1 V = 5V3V = 0V2

Fig. 6.3 Basic flip-flop or latch ‘logic 0’ = 0V, and ‘logic 1’ = 5 V

It is evident from Fig. 6.3 that V1 and V3 will always be same, due to very nature of
inverters.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 209

Let us define Logic 0 = 0V and Logic 1 = 5 V. Now open the switch ‘S’ to remove the
feedback and connect V1 to ground, as shown in Fig. 6.3 (b). Thus input to inverter A is Logic
0 and its output would be Logic 1 which is given to the input of inverter B. Since input to
inverter B is Logic 1, its output would be Logic 0. Hence input of inverter A and output of
inverter B are same. Now if we close the switch S feedback path is reconnected, then ground
can be removed from V1 and V3 can still be at 0V i.e. Logic 0. This is shown in Fig. 6.3 (c).
This is possible because once the V1 is given 0V (i.e. Logic 0) the V3 will also be at 0V and
then it can be used to hold the input to inverter A at 0V, through the feedback path. This
is first stable state.

In the simpler way if we connect the V1 to 5 V and repeat the whole process, we reach
to second stable state because V3 = 5V. Essentially the V3 holds the input to inverter. A (i.e.
V1), allowing + 5V supply to be removed, as shown in Fig. 6.3 (d). Thus V3 = 5 V can be
maintained untill desired period time.

A simple observation of the flip-flop shown in Fig. 6.3 (a) reveals that V2 and V3 are

always complementary, i.e. � �� �= or � � �� �= This does mean that “at any point of time,
irrespective of the value of V1, both the stable states are available”, see Fig. 6.3 (c) 6.3 (d).
This is fundamental condition to Flip-Flop.

Since the information present at the input (i.e. at V1) is locked or latched in the circuit,
it is also referred or Latch.

When the output is in low state (i.e. V3 = 0 V), it is frequently referred as Reset State.
Where as when the output is in high state (i.e. V3 = 5 V), it is conveniently called as Set
State. Fig. 6.3 (c) and 6.3 (d) shows the reset and set states, respectively.

6.1.1 RS Flip-Flop
Although the basic latch shown by the Fig. 6.3 (a) was successful to memorize (or store)

1-bit information, it does not provide any convenient mean to enter the required binary bit.
Thus to provide a way to enter the data circuit of Fig. 6.3 (a) can be modified by replacing
the two inverters by two 2-input NOR gate or NAND gates, discussed in following articles.

The NOR LATCH: The NOR latch is shown by Fig. 6.4 (a) and 6.4 (b). Notice that if
we connect the inputs, labelled as R and S, to logic 0 the circuit will be same as the circuit
shown in Fig. 6.3 (a) and thus behave exactly same as the NOT gate latch of Fig. 6.3 (a).

The voltage V2 and V3 are now labelled as Q and Q and are declared as output. Regard-

less of the value of Q, its complement is Q as V V().3 2= The two inputs to this flip-flop are
R and S, stand for RESET and SET inputs respectively. A ‘1’ on input R switches the flip-flop

in reset state i.e. Q = ‘0’ and Q = ‘1’. A ‘1’ on inputs (SET input) will bring the latch into set

state i.e. Q = ‘1’ and Q = ‘0’. Due to this action it is often called set-reset latch. The
operation and behaviour is summarized in the truth table shown by Fig. 6.4 (c). Fig. 6.4 (d)
displays the logic symbol of RS (or SR) flip-flop.

To understand the operation of this flip-flop, recall that a ‘1’ at any input of a NOR gate
forces its output to ‘0’ where as ‘0’ at an input does not affect the output of NOR gate.

When inputs are S = R = 0, first row of truth tables it does not affect the output. As a
result the Latch maintains its state. For example if before application of the inputs S = R
= 0, the output was Q = 1, then it remains 1 after S = R = 0 are applied. Thus, when both

210 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

the inputs are low the flip-flop maintain its last state. Thats why the truth table has entry
Q in first row.

(c) Truth Table

R
Q

S B

A

R Q

S Q

Resulting State

Last State or No
Change at output

Reset State

Set State
Indeterminate

or Forbidden State

S

0 0

00

0

1

1

?1

1

Q

QR

1

(d) Logic Symbol

(V2)

Q

(b) Construction

V2
A

V3R

V1

(a) Construction

B

(V3)

S

Fig. 6.4 Basic NOR gate latch or RS (or SR) flip-flop

Now, if S = 0 and R = 1, output of gate-A goes low i.e. Q = 0. The Q is connected to input
of gate-B along with S input. Thus with Q = 0 both the inputs to NOR gate B are LOW. As

a result � ��= This Q and � are complementary. Since Q = 0 the flip-flop is said to be in
“reset state”. This is indicated by the second row of the truth table.

Now if S = 1 and R = 0 output of gate-B is LOW, making both the inputs of gate-A LOW,

consequently Q = 1. This is “set state”. As Q = 1 and � ��= the two outputs are complemen-
tary. This is shown in third row of truth table.

When S = 1 and R = 1, output of both the gates are forced to Logic 0. This conflicts with

the definition that both Q and � must be complementary. Hence this condition must not be
applied to SR flip-flop. But if due to some reasons S = 1 and R = 1 is applied, then it is not
possible to predict the output and flip-flop state is said to be indeterminate. This is shown
by the last row of truth table.

It is worth to devote some time to investigate why S = R = 1 results indeterminate state
while we said earlier that output of both the gates go LOW for this input. This is true due
to the logic function of NOR gate that if any of the input is HIGH output is LOW. In the circuit

of Fig. 6.4 (b) both Q and � are LOW as long as S and R are High. The problem occurs when
inputs S and R goto LOW from High. The two gates can not have exactly same propagation
delay. Now the gate having smaller delay will change its state to HIGH earlier than the other
gate. And since this output (i.e. Logic 1) is feeded to the second gate, the output of second
gate is forced to stay at Logic 0. Thus depending upon the propagation delays of two gates,
the flip-flop attains either of the stable states (i.e. either Q = 1 or Q = 0). Therefore it is not
possible to predict the state of flip-flop after the inputs S = R = 1 are applied. Thats why the
fourth row of truth table contains a question mark (?). For the above reasons the input condition
S = R = 1 is forbidden.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 211

The NAND Gate Flip-Flop
The NOR gate latch shown by Fig. 6.4 (b) may also be modified by replacing each

inverter by a 2-input NAND gate as shown in Fig. 6.5 (a). This is a slightly different latch

(a) Construction

A

B
Q

QS

R

Resulting State

Last State or No
Change at output

Reset State

Set State
Indeterminate

or Forbidden State

S

1 1

01

1

0

0

?0

0

Q

Out-
put ‘Q’R

1

(b) Truth Table

Q

(c) Logic Symbol

S Q

R

Fig. 6.5 NAND gate latch or 	 ,
 flip-flop

from the NOR latch. We call it 	
 latch. The truth table (Fig. 6.5(b)) summarizes the
operation and Fig. 6.5(c) shows the logic symbol for 	
 latch.

The name 	
 is given to this latch to indicate that intended operation is achieved on
asserting logic ‘0’ to the inputs. This is complementary to the NOR latch in which operation
is performed when input is logic ‘1’.

The explanation of operation of 	
 flip-flop lies in the statement that, If any input of
NAND gate goes LOW the output is HIGH, whereas a ‘1’ at any NAND input does not affect
the output. Moreover, the output will be LOW only and only when all the inputs to NAND
gate are HIGH.

When both 	 ��
 are HIGH i.e. 	 �
 � �� then the NAND output are not affected.

Thus last state is maintained. When 	 � � and
 � � then output of gate-B goes HIGH
making both the inputs to NAND-A as HIGH. Consequently Q = 0 which is reset state. In

the similar way 	 � � and
 � � bring the circuit to set state i.e. Q = 1. When both the inputs

are LOW i.e. 	 �
 � � both Q and � are forced to stay HIGH which inturns lead to
indeterminate state for the similar reasons given for NOR latch.

The 	
 flip-flop can be modified further by using two additional NAND gates.

These two gates, labelled as C and D, are connected at 	 ��
 Fig. 6.5 (a) inputs to
act as NOT gate, as shown in Fig. 6.6 (a). This converts 	
 latch into a latch that behaves
exactly same as the NOR gate flip-flop (i.e. NOR latch), shown in Fig. 6.4 (b). Hence this latch
also is referred as SR flip-flop. The truth table and logic symbol will be same as that of NOR
latch. The truth table may also be obtained by inverting all the input bits in 	
 truth table
shown in Fig. 6.5 (b) as input to 	
 latch is complemented. To understand the operation of
this latch, consider the Fig. 6.6 (a).

When both S and R inputs are LOW outputs of NAND gates C and D are HIGH. This
is applied to the inputs of 	
 latch which maintains the last state in response to 	 �
 � �

(see Fig. 6.5 (b)). In the same way, application of S = 0 and R = 1 results 	 � � and
 � � ,
and consequently the latch attains “Reset State”. Similarly, the other input combination in
truth table can be verified.

212 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(b) Construction

R Q

S QS

R

C

D

(a) Modification in S R Flip-Flop

S
AC

D
B

Q

R

S Q

Q

(d) Logic Symbol
(c) Truth Table

Resulting State

Last State preserved
Change at output or No

Reset State or
Low State

Set State or
High State

Indeterminate
or Forbidden State

S

0 0

00

0

1

1

?1

1

Q

Out-
put QR

1

Q

R

Fig. 6.6 NAND gate latch or SR flip-flop

At this point we advice readers to verify the truth table of SR latch through the NAND
gate construction of this latch, shown in Fig. 6.6 (b).

For the beginners it is worth to go back to the beginning of this article (i.e. start of
6.1.1). Infact the SR (or RS) flip-flop gives the basic building block to study and analyse
various flip-flops, and their application in the design of clocked sequential circuits.

Example. Draw the internal block diagram alongwith pinout for IC 74LS279, a quad set
reset latch. Explain its operation in brief with the help of truth table.

Sol. Fig. 6.7 shows the required block diagram and pinout.

1 2 3 4 5 6 7 8
R S1 S2 Q R S1

16 15 14 13 12 11 10 9
Vcc S1 R Q S1 S2 R Q

GNDQ

Fig. 6.7 IC 74LS279, a quad set reset latch

From the figure it is evident that the IC contains 4 	
 latch shown earlier in Fig. 6.5.
Two flip-flops have two inputs, named 	
�� are exact reproduction of 	
 latch shown in Fig.
6.5. Remaining two flip-flops have three inputs labelled 	 	
�� �� � in which instead of single
	 input we get two set inputs 	 ����	� �

. Since the latches are constructed by NAND gates
a LOW either on 	� or on 	� will set the latch. Truth table summarizing its operation is

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 213

shown in Fig. 6.8. Not that making
 � � and either of 	 ����	� �
 LOW, leads to indetermi-

nate state.

1

2

3

R

S1

S2

S

Set State

Reset state

Last State

Indeterminate

Indeterminate

Q

1

1

?

?

×

×

×

×

1 1

1

Q

11

0

0

RS2S1

Set State

Resulting State

1

1

0

0

0

00

0

Fig. 6.8 Truth table; ‘X’ → don’t care Fig. 6.9 Converting 	 ����	� �
 into 	

Also if 	 ����	� �
 are shorted (or tied) together, as shown in Fig. 6.9, the two set inputs

can be converted into single set input 	 . When 	 ����	� �
 are shorted together, the latch

exactly becomes 	
 flip-flop of Fig. 6.5.

6.1.2 D Flip-Flop
The SR latch, we discussed earlier, has two inputs S and R. At any time to store a bit,

we must activate both the inputs simultaneously. This may be troubling in some applications.
Use of only one data line is convenient in such applications.

Moreover the forbidden input combination S = R = 1 may occur unintentionally, thus
leading the flip-flop to indeterminate state.

In order to deal such issues, SR flip-flop is further modified as shown in Fig. 6.10. The
resultant latch is referred as D flip-flop or D latch. The latch has only one input labelled D
(called as Data input). An external NAND gate (connected as inverter) is used to ensure that
S and R inputs are always complement to each other. Thus to store information in this latch,
only one signal has to be generated.

D Q

Q

(d) Logic Symbol

(b) Construction(a) Modification in S R Flip-Flop

R Q

S Q

E

D AC

D
B

Q
E

Q
D

Resulting State

Reset State or
Low State

Set State or
High State1

Q

(c) Truth Table

00

1

D

Fig. 6.10 D flip-flop or D latch

214 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Operation of this flip-flop is straight forward. At any instant of time the output Q is same
as D (i.e. Q = D). Since output is exactly same as the input, the latch may be viewed as a
delay unit. The flip-flop always takes some time to produce output, after the input is applied.
This is called propagation delay. Thus it is said that the information present at point D (i.e.
at input) will take a time equal to the propagation delay to reach to Q. Hence the information
is delayed. For this reason it is often called as Delay (D) Flip-Flop. To understand the
operation of this latch, considr Fig. 6.10 (a).

As shown in figure, the D input goes directly to S and its complement is applied to R
input. When data input is LOW i.e. D = 0, we get S = 0 and R = 1.50 flip-flop reaches to
RESET State where Q = 0. When D = 1 the S input receives 1 and R = 0. Thus the flip-flop
goes to SET state, where Q = 1. This operation is summarized in truth table, shown in Fig.
6.10 (c). It is interesting to note that the next state of D flip-flop is independent of present
state. It means that if input D = 1 the next state will be SET state, weather presently it is
in SET or RESET state.

Furthermore, by Fig. 6.10 (a) it is clear that the external inverter ensures that the
forbidden condition S = R = 1 will never arrive. The D flip-flops are popularly used as the
delay devices and/or latches. In general, simply saying latch means a D flip-flop.

Example. A logic circuit having a single input labelled X, and two outputs Y1 and Y2
is shown in fig. 6.11. Investigate the circuit and find out does this circuit represents a latch?
If yes, then name the latch and draw the truth table for this circuit.

Sol. To investigate the circuit, we find out values of outputs Y1 and Y2 for each and
every possibility of input X.

A carefully inspection of circuit reveals that the portion of the circuit which consist of
two NAND gates A and B

AC

B

S R Latch

Y1

Y2

X

S Q

R Q

C
X

Y1

Y2

Fig. 6.11 Logic circuit for example 6.2 Fig. 6.12 Simplified circuit for Fig. 6.11

represent 	
 flip-flop. This portion of the circuit is surrounded by dotted lines in Fig. 6.11.
The circuit is redrawn in Fig. 6.12 for simplicity. This simplification shows that input to
	����� and input to
 is X or 	 � � and
 � �� The outputs Y1 and Y2 are nothing but the
������ outputs 	
 latch i.e. Y1 = Q and � � �� Thus, the outputs Y1 and Y2 are always
complimentary..

Hence, when the input X is LOW i.e. X = 0, it results in 	 �= and
 ��= The latch is

forced to reset state, in which case Q = 0 and � � �� consequently Y1 = 0 and Y2 = 1. Thus,

for X = 0 we get Y1 = 0 and Y2 = 1. In the similar way when X = 1, 	 � � and
 = � making
Y1 = 1 and Y2 = 0 which is set state. We now summarize these results in a truth table shown

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 215

in Fig. 6.13. From the truth table it is clear that Y1 = X and � �� = . Thus the given circuit

represents a D Latch which gives Q = D and � � �� In the Figs. 6.11 and 6.12 the input D

is renamed as X and the outputs � �� � are named as Y1 and Y2 respectively.

X S R Q Q Y = Q1

0 0 0 01

1

11

0 1 1 0 1 0

Y = Q2

(a)

1 1

10 0

0

X Y2Y1

(b)

Fig. 6.13 Truth table for Fig. 6.12

In Fig. 6.12, if the output of gate C is connected to
 and input X is directly connected

to 	 then Y1(= Q)= � and � �� ����= = Therefore, the circuit may be referred as inverted
D latch.

6.1.3 Clocked Flip-Flops
All the flip-flops discussed earlier are said to be transparent, because any chance in

input is immediately accepted and the output changes accordingly. Since they consist of logic
gates along with feedback they are also regarded as asynchronous flip-flops.

However, often there are requirements to change the state of flip-flop in synchronism
with a train of pulses, called as Clock. In fact we need a control signal through which a flip-
flop can be instructed to respond to input or not. Use of clock can serve this purpose.

T

(b)

tOFF

T

(a)
tON tON

tOFF

Fig. 6.14 Representation of Pulse

A clock signal can be defined as a train of pulses. Essentially each pulse must have two
states, ON state and OFF state. Fig. 6.14 shows two alternate representation of a pulse, and
Fig. 6.15 shows a clock signal. The clock pulses are characterized by the duty cycle, which
is representative of ON time in the total time period of pulse, and is given as:

Duty Cycle = D = �

� �

���

�� ���

���� �
�+

=

In the digital systems we need a clock with duty cycle D ≤ 50%. The OFF time of a pulse
is also referred as bit-time. This is the time in which flip-flop remains unaffected in either
of two stable states. The state of latch during this time is due to the input signals present
during ON time of pulse.

State Qn + 1 is due to the inputs present during ON time of (n + 1)th pulse i.e at
t = nT. In the analysis and discussion we adopt the designation Qn to represent “present
state” which is the state before the ON time of (n + 1)th pulse or state just before the time
t = nT in Fig. 6.15, and Qn + 1 as “next state” i.e. the state just after the ON time of

216 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(n + 1)th clock pulse. Thus Qn represents the state (or output) in bit time n and Qn + 1
represents the output Q in bit time n + 1, as shown in Fig. 6.15.

Bit-TIME
Bit-Time

n
n + 1

Qn+1
state

Qn
state

1 Bit-Time
3

1 Bit-Time
2

Bit-Time
1

1st Pulse
tON tOFF

tOFFtON tON

2nd Pulse 3rd Pulse 4th nth Pulse
(n+1)th
Pulse

(n+2)th
Pulse

(n+3)th
Pulse

O T 2T 3T (n–1)T nT (n+1)T (n+2)T tim

High

Low

tON tON
tOFF

Fig. 6.15 Clock signal-pulse train of shape shown in Fig. 6.14 (b)

As we said earlier, the clock pulse can be used as a control signal. It allows the flip-flop
to respond to inputs during tON period of clock, it is called enabling the flip-flop. Where as
the flip-flop is instructed, not to respond to inputs during tOFF period of clock, i.e. flip-flop
maintains its output irrespective of changes in input. This is called disabling the flip-flop.

In this way it is possible to strobe or clock the flip-flop in order to store the information
at any time said alternately clocking allow us to selectively enable or disable the flip-flop
which is a necessary requirement in large digital systems.

Clocked SR Flip-Flop: A simple way to get a clocked SR flip-flop is to AND the inputs
signals with clock and then apply them to S and R inputs of flip-flop as shown in fig. 6.16 (a).
For the simplicity SET and RESET inputs of unclocked SR latch are labelled S1 and R1
respectively. Where as external inputs are labelled S and R.

S1 Q

R1 Q

G1

G2

S

CLK

R

CLK Qn Sn Rn Qn+1 Comments
0 0

0 0 0 0
000

0 0

0

0

1
1
1
1
1
1
1
1 1 1 1 ?

111
1
1
0

10 × × 1
0××

?

0
1

1

0
0
1
1

1

1

1

Flip-Flop disabled no change
 in state and last state maintained

Last State Qn+1=Qn
Reset state
Set state

Indeterminate
Last state Qn+1=Qn

Reset state
Set state

Indeterminate

(a) Construction of clocked Sr flip-flop. (b) Truth Table

(c) Chare terigtic Equation

S Q

R Q

CLK

(d) Logic Symbol

1
1

×

×

11

Qn
0

00 1101 10

Q =S +R Qn+1 n n n
S R =0n n

Q S Rn+1 n n

Fig. 6.16 Clocked RS (or SR) flip-flop

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 217

When clock (abbreviated as CLK) is LOW, outputs of gates G1 and G2 are forced to 0,
which is applied to flip-flop inputs. Thus when CLK = 0, S1 = 0 and R1 = 0. Since both the
inputs are LOW, flip-flop remain in its previous state. Alternatively if Qn = 0, Qn + 1 = 0 and
if Qn = 1 we get Qn + 1 = 1. Thus, during tOFF period inputs have no effect on the circuit.
This is shown in first two rows of truth table given in Fig. 6.16 (b).

When clock is HIGH, gates G1 and G2 are transparent and signals S and R can reach
to flip-flop inputs S1 and R1. The next state will now be determined by the values of S and
R. Thus during tON point CLK = 1 causing S1 = S and R1 = R and the circuit behaves exactly
same as the normal flip-flop discussed in subsection 6.11, as shown by rest of the rows of
truth table.

Note that in truth table, inputs are labelled Sn, Rn. They represent the value of inputs
during bit-time ‘n’ at the tON time of (n + 1)th pulse or at t = nT in Fig. 6.15. The output
also is Qn + 1 not simply Q. Because presence of clock pulses force us to consider two different
instants of time : the time before application of pulse, Qn (i.e. present state) and the time
after the application of pulse, Qn + 1 (i.e. next state).

Characteristic equation for this flip-flop is obtained from K-map shown in Fig. 6.16 (c),
which is an algebric expressions for the binary information of the truth table. This expression
gives the value of next state as a function of present state and present inputs. The indeter-
minate conditions are marked “X”-don’t care in the map because, depending upon the propa-
gation delay of logic gates, state can be either 1 or 0. Inclusion of relation Sn.Rn = 0 as a part
of characteristics equation is due to the requirement that both Sn and Rn must not be made
1 simultaneously.

Finally, the logic symbol of clocked SR flip-flop is shown in Fig. 6.16 (d), which now has
three inputs named S, R and CLK.

(a)

Q

Q
S

R

CLK

Q

Q
S

R

CLK

(b)

Fig. 6.17 Two different realizations of clocked SR flip-flop

Figure 6.17 shows two alternate realizations of clocked SR flip-flop. Both the realizations are
popularly used in MSI and LSI (Medium and Large Scale Integrated) circuits. In many texts
the signal CLOCK is also labelled ENABLE or EN.

Example 1. Fig. 6.18 (a) shows the input waveforms S, R and CLK, applied to clocked
SR flip-flop. Obtain the output waveform Q and explain it in brief. Assume flip-flop is resent
initially.

Sol. The resulting waveform at the output Q is shown in Fig. 6.18 (b). To understand
the output waveform, recall that the inputs affect the flip-flop only when the clock = 1
otherwise flip-flop maintains its previous output irrespective of present input.

Initially at t = 0 flip-flop is reset i.e. Q = 0. At this time S = 1 and R = 0, but flip-flop
remains unaffected since CLK = 0.

218 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(b) Resultant output waveforms

0

1

t1 t2 t3 t4 t5 t6

t8

t7 t9 t10 t11

CLK

0

1

1

0
R

S

Q

1

0

t

(a) Given Inputs and Clock Waveforms

Fig. 6.18 Waveforms for example 6.3

At t1 clock goes HIGH and output also goes HIGH i.e. Q = 1 since S = 1 and R = 0 at
this time. At time t2 CLK = 0 and flip-flop remain SET untill t3, irrespective of changes in
S and R.

At time t = t3 CLK = 1 and because S = 0 and R = 1 at this instant, we get Q = 0. At
t4 both inputs are LOW while clock is still HIGH. Since S = R = 0 at this instant flip-flop
remains reset untill just after time t5.

Just after t5 S goes HIGH making Q = 1. At time t6 clock switches to LOW state. Just
before this HIGH to LOW transition of clock S = 1 and R = 0 and Q = 1. Thus flip-flop remains
set untill t7. Changes in R and S does not affect flip-flop during t6 to t7 as CLK = 0.

At t = t7 clock goes HIGH, at which time R = 1 and S = 0. So flip-flop enters in reset
state. Q = 0 is retained untill t8 where R switches to 0 and S switches to 1. Therefore
Q = 1 at this time.

Clock goes LOW at t9 and since Q = 1 just before clock goes LOW, flip-flop remains set
untill t10 where clock goes HIGH again. The inputs S and R changes during time between
t9 to t10, but cannot affect the output since CLK = 0.

At t = t10 clock goes HIGH and since R = 1 and S = 0 at t10, the flip-flop attains reset
state. At the time t = t11 clock goes LOW and still R = 1 and S = 0 was maintained at the
input, the flip-flop remains in LOW state beyond t11.

Clocked SR Flip-flop with Clear and Preset
When the power is first applied to the flip-flop, it come up in random state i.e. state of

circuit is uncertain. It may be in SET state or in RESET state. This is highly undesired in
majority of application. There are requirements that the flip-flop must be in a particular state
before the actual operation begins. In practice, it may be required to preset (Q = 1) or clear

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 219

(Q = 0) the flip-flop to start the operation. In flip-flops such provisions can easily be provided
for this purpose.

(a) Construction

S

R

Q

Q
R

CLK

S

P (Preset)R

CLR(Clear)

CLK CLRPR
Out-
Put Q

0

0

0

0 0

0

0

?

Qn+11

1

1

0 1

1

1

Resulting State

Clear or Reset

Preset or Set

Indeterminate

Normal Flip-Flop
Next state is due
to S R inputs:

(b) Truth table

S

CLK

R

PR

CLR Q

(c) Logic symbol

Q

Fig. 6.19 SR Flip-Flop with ‘CLEAR’ and ‘PRESET’

Q

QS

R

CLK

PR

CLR

S

CLK

R

PR

CLR

(c) Logic symbol

Q

Q

(a) Construction (b) Truth table

CLK CLRPR
Out-
Put Q

0

0

0

1 1

0

?

Qn+11

0

0

1 0

0

1

Resulting State

Clear

Preset or Set

Indeterminate

Normal Flip-Flop
Next state is
determined

by S R inputs:

1

Fig. 6.20 Alternate realization of ‘CLEAR’ and ‘PRESET’ with SR flip-flop

220 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Two different realizations to accommodate a preset (abbreviated as PR) and a clear
(abbreviated as CLR) inputs are shown in Figs. 6.19 and 6.20. The PR and CLR are direct
inputs and are called asynchronous inputs; as they don’t need the clock to operate. Both
of the above circuits require that PR and CLR inputs should be applied only in absence of
clock otherwise unexpected behaviour can be observed. More over both PR and CLR should
not asserted at same time as it leads to indeterminate state. Logic values to be applied to
preset and clear are accommodated in the truth tables. Before starting normal clocked
operation the two direct inputs must be connected to a fix value as shown by the last entries
of corresponding truth tables. The logic symbols for the two circuits are also shown in the
figure.

In Fig. 6.19, due to the construction of circuit the flip-flop can be preset or clear on the
application of Logic 1 at PR or CLR respectively. In contrast, realization shown in fig. 6.20
demands a Logic 0 to be applied at the particular asynchronous input, in order to perform
the intended operation. For normal operation these inputs must be connected to Logic 1, as
indicated by the last row of truth table shown in Fig. 6.20 (b). Similarly in fig. 6.19 the PR
and CLR must be connected to Logic 0 to obtain normal flip-flop operation.

The circuits proposed in Figs. 6.19 and 6.20 requires that the PR and CLR should only
be applied when clock is LOW. This imposes a restriction to use these two signals. An
improvement may be considered to remove this restriction.

Fig. 6.21 shows a clocked SR flip-flop with preset and clear �� ������

 � inputs that can

override the clock. � ������

 can be safely applied at any instant of time whether clock

is present or not.

CLK CLRPR
Out-
Put Q Resulting State

0 01 Clear

0

0 0

11 1
Normal Flip-Flop
Next state is
determined by
S and R Inputs.

Indeterminate

Preset

?

Qn+1

11

(b) Truth table

×

×

×

Q

Q

R

CLK

PR

CLR

EAC

D B F

S

(a) Construction

Fig. 6.21 SR flip-flop with clock override ‘clear’ and ‘preset’

As shown in figure two AND gates, E and F, are used to accommodate preset �� �
 and Clear

���
� inputs. The truth table summaries the effect of these asynchronous inputs in the circuit.

Output Q is provided through gate E whereas � is output of gate F. Both �
 and ��
 are active
LOW signals i.e. asserting Logic ‘0’ at these inputs perform the intended operation.

According to first row of truth table when ��
 = � and PR = 1 is applied then irrespective
of the value of S, R and CLK, output of gate E is 0. Thus, Q = 0 and it is feeded to the input
of NAND gate B. So output of NAND-B is 1 which is applied to the input of gate F. Since,

we applied PR = 1, both the inputs to AND gate F are HIGH. Consequently, the output of gate

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 221

F goes HIGH, which is available at � output of flip-flop. Hence, when �
 � � and ��
 = �

is applied, we get Q = 0, and � � �. This is frequently called as clearing the flip-flop.

Similarly when �
 � � and ��
 = � is applied, output of gate F, which is Q, goes LOW

i.e. � � �. This forces the gate-A to give HIGH output. Since ��
 = � is already present,

output of gate E, which is Q, goes HIGH. Thus, when �
 � � and ��
 = � is applied we get

Q = 1 and � � �, which is required state. This is referred as presetting.

Since both �
������
 are active LOW inputs, they must be connected to Logic 1, in
order to obtain normal flip-flop operation as shown by fourth row of truth table. Also making
both �
������
 LOW is forbidden as it results in indeterminate state, for the similar
reasons explained earlier.

Clocked D Flip-Flop
In subsection 6.1.2 we obtained a D flip-flop by using an external inverter present at the

input of SR latch as shown in Fig. 6.10 (a). In the similar way a clocked D flip-flop is obtained
by using an external inverter at the input of clocked SR flip-flop. The clocked D flip-flop is
shown below in Fig. 6.22. Note that unclocked RS latch of Fig. 6.10 (a) is replaced by a
clocked RS flip-flop shown in Fig. 6.16 (d).

S Q

R Q

CLK

(a) Modification in clocked
S R flip-flop

(b) Construction

Q

Q

R

CLK

E D

C A

B

D

1

0

0

11

(c) Truth table

×

CLK

11 1 1

0 0

1 11

1

0

0 0 × 0

1

Set State

Comments

Flip-Flop
Disabled
last state
Maintained

Rest State

Set State

Reset State

Qn+1Qn Dn

1

1

0

0

1

Qn

Qn+1
Dn 1

Q =Dn+1 n

CLK

D Q

Q

(d) Characteristic (e) Logic symbol

D

0 0

Fig. 6.22 Clocked D flip-flop equation

The characteristics equation is derived from K-map shown in Fig. 6.22 (d), which speci-
fies that irrespective of previous state next state will be same as the data input. In truth table
Dn represents the data input at the tON time of nth pulse.

222 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The operation of clocked D flip-flop is same as explained in subsection 6.1.2, when
CLK = 1. When CLK = 0, the D input has no effect on the flip-flop and the present state is
maintained. This is evident by the first two rows of truth table. The Logic symbol of clocked
D flip-flop is shown in Fig. 6.22 (e).

Similar to clocked SR flip-flops, the clocked D flip-flop may also be accommodated
with the asynchronous inputs “preset” and “clear”. One particular realization is shown in Fig.
6.23. An alternative arrangement to obtain a D flip-flop, directly from SR flip-flop with clear
and preset is shown in Fig. 6.24.

(a) Construction

S

R

Q

Q

CLK

D

PR

CLR

D

CLK

PR

CLR Q

Q

(b) Logic symbol

Fig. 6.23 D flip-flop with clear and preset

(b) Logic symbol

D

CLK

PR

CLR Q

Q

(a) Modification in S R flip-flop

CLK

PR

CLR Q

QS

R

D

Fig. 6.24 Alternate realization of clear and preset in D flip-flop

On comparing Fig. 6.23 (a) with Fig. 6.19 (a), we find that both the circuits are same
except that, in two external inputs are connected together through an inverter placed be-
tween them. Thus both the circuits behave similarly and explanation of Fig. 6.19 (a) is equally
valid in this case. Similarly, the arrangement shown in Fig. 6.24 (a) is built upon the clock
SR flip-flop shown in Fig. 6.20 (c).

Example 2. In a certain digital application it is required to connect an SR flip-flop as
toggle switch, which changes its state every time when clock pulse hits the system. Show the
arrangement and explain in brief how it works as a toggle switch.

Sol. SR flip-flop can be connected as a toggle switch as shown in Fig. 6.25. On the arrival
of CLOCK pulse this arrangement forces the flip-flop either to go to SET state if currently
it is RESET or to RESET state if currently it is SET.

As shown, a feedback path connects the output Q to R input while another feedback path
connects the � to input S. Recall that the state of flip-flop can be changed only when the
CLK = 1 and the last state reached, is maintained while CLK = 0.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 223

CRK

S

R

Q

Q

Fig. 6.25 SR flip-flop connected as toggle switch

To start let the flip-flop is initially reset, i.e. Q = 0 and � � �. Same time due to the
feedback, applied inputs are S = 1 and R = 0 because 	 � � and R = Q.

As soon as the clock goes HIGH flip-flop enters into SET state i.e. Q = 1 and Q = 0. Thus

the inputs would be 	 � � � � and R = Q = 1 because of feedback path and remain unchanged
untill the next clock pulse arrives.

The moment clock goes HIGH again, flip-flop changes its state and attains RESET state

where Q = 0 and � � �� Again through the feedback inputs become R = 0 and S = 1. Note
that this is the initial state we assumed in beginning. Thus after the arrival of two successive

clock pulses, the switch has returned to its initial state Q = 0 and � � ��

Therefore, the switch shown in Fig. 6.25 toggle between the two states with clock.
Moreover the switch reproduces its state (either Q = 0 or Q = 1) after two successive clock
pulses has arrived. This does mean that it really does not matter weather the initially
assumed state is Q = 0 or Q = 1.

In practice, the feedback paths in Fig. 6.25 may lead to uncertainty of the state. In the
above paragraphs we assumed that the inputs available at S and R do not change during the
tON period of clock. Thus the change in state can occur only once in a single clock pulse,
which is not true. If the propagation delay (tP) of the flip-flop is smaller than the tON time,
multiple transitions (or state changes more than once) can be observed in a single clock
pulse. Hence at the end of clock pulse the state of flip-flop is uncertain. This situation is
referred as race-around condition.

Race around has resulted because the flip-flop remains transparent as long as CLK = 1
(or for entire tON time). At this point we refrain ourselves from discussing it further. We
address the complete discussion on it, only after examining and identifying the similar
situations in various flip-flops.

Example 3. Realize a toggle switch, that changes its state on the arrival of clock, by
using a D flip-flop. Explain its operation briefly.

224 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Sol. Fig. 6.26 shows a D flip-flop configured to work as toggle switch when clock is
applied.

CLK

Q

Q

D

Fig. 6.26 D flip-flop as toggle switch

As shown the output � is connected to D via a feedback path, so that � � � always. To
understand the operation recall that “in a D flip-flop output at any instant of time, provided
CLK = 1, is same as input.” So Q = D always, if CLK = 1. Furthermore output � � �� so
through the feedback path complement of data D is now feeded to input. Thus if initially the
flip-flop was reset (Q = 0) the Q = 1 is applied to input through the feedback path. Consequently
D = 1 will be retained untill next clock pulse arrive. As soon as CLK = 1, D = 1 affects the
circuit. This results in change in state of flip-flop giving Q = D = 1 and � � � at the output.
But at the same time � is feeded to D input due to which input changes to � � � � �. On the
arrival of next clock pulse the circuit toggles again and change its state in similar way.

It is evident again from Fig. 6.26 that even this switch also, suffers from the “race
around” problem, explained in example 6.4. The problem is a consequence of the feedback
path present between � and D. The ouput of this switch races for the same reasons as was
given for SR flip-flop in example 6.4.

6.1.4 Triggering of Flip-Flops
By a momentarily change in the input signal the state of a flip-flop is switched. (0-1-0).

This momentarily change in the input signal is called a trigger. There are two types by which
flip-flops can be triggered.

Edge trigger
Level (pulse) trigger
An edge-triggered flip-flop responds only during a clock pulse transition i.e. clock pulses

switches from one level (reference voltage) to another. In this type of flip-flops, output
transitions occur at a specific level of the clock pulse. When the pulse input level exceeds this
reference level, the inputs are locked out and flip-flop is therefore unresponsive to further
changes in inputs until the clock pulse returns to 0 and another clock pulse occurs. An edge-
triggered flip-flop changes states either at the positive edge (rising edge) or at the negative
edge (falling edge) of the clock pulse on the control input.

When the triggering occurs on the positive going edge of the clock, it is called positive
edge triggering and when the triggering occurs at the trailing edge of the clock this is called
as negative edge triggering.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 225

The term pulse-triggered or level triggered means that data are entered into flip-flop on
the rising edge of the clock pulse, but the output does not reflect the input state until the
falling edge of the clock pulse. As this kind of flip-flops are sensitive to any change of the
input levels during the clock pulse is still HIGH, the inputs must be set up prior to the clock
pulse’s rising edge and must not be changed before the falling edge. Otherwise, ambiguous
results will happen.

6.1.5 JK and T Flip-Flops
Problem of SR flip-flop to lead to indeterminate state when S = R = 1, is eliminated in

JK flip-flops. A simple realization of JK flip-flop by modifying the SR type is shown in Fig. 6.27
(a). In JK the indeterminate state of SR flip-flop is now modified and is defined as TOGGLED
STATE (i.e. its own complement state) when both the inputs are HIGH. Table shown in Fig.
6.27 (b), summarizes the operation of JK flip-flop for all types of input possibilities. Charac-
teristic equation in Fig. 6.27 (c) is derived from K-Map, filled by the data provided by truth
table.

Truth table shows the input applied from external world (J and K). It also shows the flip-
flop inputs S and R and the whose values are due to the modification and in accordance with
the values of J and K. Input signal J is for Set and K is for RESET. Both J and K are ANDED
with Q and Q respectively to generate appropriate signal for S and R. Since Q and Q are
always complementary, only one of the AND gates (Fig. 6.27 (a)) is enable at a time. So either
only J or only K can reach to one of S and R inputs, thus any one of inputs will receive the
data to be stored. While the other AND gate is disabled i.e. its output is 0, thus second input
of SR flip-flop will always be 0. Thus, indeterminate state never occurs even when both J and
K inputs are HIGH.

Q

QS

CLK

R

J

K KQ

JQ

(a) Realization of JK
 flip-flop from SR flip-flop

1 1

111

01 11 1000

0
Qn

Qn+1 J Kn n

Q =J .Q +K Qn+1 n n n n

(c) Characteristic equation

CLO
CK

Present
State

External
Inputs

Flip-Flop
Inputs

Output or
Next state

1

1 1 1 1 1 000

1 1 1 1 1 10

1 1 0 1 0 0 0 1

1 1 1 1 1

1 1 1 1 0000

0 0 1 000× ×

0 1 0 × × 0 0 1
1 0 1 0 0 0 0 0

0000011 1

1 1 0 0 0
0

00

Qn

Qn+1CLK Qn Qn Jn Kn Sn Rn

Qn

Qn

1

Resulting
state

Flip-Flop Disa-
bled for CLK=0,
no change

No change at
output. Present
state becomes

next state

Reset state

Set State

Toggled state
next state is
complement
of present state

0

000

(b) Detailed truth table

Fig. 6.27 JK flip-flop through SR flip-flop

226 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(b) Logic symbol

CLK

Q

QK

J

(a) Construction

Q

Q

J

CLK

KQ

JQ

K

Fig. 6.28 Clocked JK flip-flop

(a) Construction

Q

Q

CLK

KQ

JQJ

K

CLR

PR

CLK

Q

QK

J

CLR

PR

(b) Logic symbol

Fig. 6.29 JK flip-flop with active LOW preset and clear

As an example assume that initially Qn = 0, � �� = and inputs applied are J = 1 and K
= 0. So we get Sn = J. � �� = and Rn = K. Qn = 0. Application of S = 1 and R = 0, when clock
arrives, switches the state of flip-flop HIGH. Now if we assume Qn = 1. � �� = with same J
and K, inputs result in Sn = Jn.� �� = and Rn = KnQn = 0 applied to SR Flip-flop. When both
the S and R inputs are LOW flip-flop does not under go any change of state. So Qn +1 = Qn
= 1. These two inputs are shown in 7th and 8th row of truth table. In the similar way entries
in other rows of truth table can be verified.

Note that when both inputs are HIGH (i.e. J = 1 and K = 1) then, in Fig. 6.27 (a), we find
that now S = J = Q and R = K = Q. Thus it is evident that the two external AND gates become
full transparent and circuit may be viewed as if � is connected to S input and Q connected to
R input. Thus at J = K = 1 flip-flop behaves as an SR toggle switch shown in Fig. 6.25.

Note: Asynchronous inputs � ������

 must not be activate when clock is present,

other wise unexpected behaviour may be observed. Hence all the discussions presented in
example 6.4 for toggle switch is equally valid for JK flip-flop when both J and K are HIGH.

Furthermore, when J = K = 1 then due to the two feedback paths the output may start
racing around the inputs causing multiple transitions. Thus “Race Around” condition may occur
in JK flip-flop when both inputs are HIGH, for the similar reasons given in example 6.4.

Two gate level constructions for the JK flip-flop is shown in Fig. 6.28 (a) and 6.29 (a)
along with their logic symbols shown in Fig. (b) in each figures.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 227

1 1 1 00

0 0×

× 1

0 0 0 0

00001 1

1

Qn

Qn+1Qn Tn Jn Kn

Qn

Resulting
state

Flip-Flop Disa-
bled for CLK=0,
no change next
state=present

Toggled state or
complemented
state next state
=present state

Next state
Out-putApplied InputsPresent

StatesCLK

Maintain Out-put
state no change
in out-put next

state=present state

0 1 × ×

0

Qn

1 0 × ×

1 0 1

1

1 10 1 11

1 1
Qn

(d) Construction with active
low clear & preset

Q

Q

CLK

TQ

TQ

CLR

PR

CLK

Q

Q

T

CLR

PR

(e) Logic symbol

1

1
10

0

1

Qn+1

Tn

Q =T Q +T Qn+1 n n n n

(c) Characteristic
equation

CLK

Q

Q

J

(a) Realization of T
 flip-flop from J K

K

(b) Detailed truth table

T

T

Fig. 6.30 Clocked T (Toggles) flip-flop with active LOW asynchronous inputs

The JK flip-flops are very popular as indeterminate state (as present in SR type) does
not exist. Furthermore, due to the toggling capability, when both inputs HIGH, on each
arrival of pulse, it forms the basic element for counters. For this purpose JK flip-flop is
further modified to provide a T flip-flop as shown in Fig. 6.30.

T flip-flop is a single input version of JK flip-flop, in which the inputs J and K are
connected together, as shown, and is provided as a single input labelled as T. The operation
is straight forward and easy, and summarized in truth-table given in Fig. 6.30 (b), while
characteristic equation is derived in Fig. 6.30 (c).

When the clock is absent, the flip-flop is disable as usual and previously latched output is
maintained at output. When the clock is present and T = 0, even though flip-flop is enabled the
output does not switch its state. It happens so because for T = 0 we get J = K = 0 and thus next
state is same as present state. Thus if either CLK = 0 or T = 0, state does not change next state
is always same as present state.

When T = 1 during CLK = 1, it causes J = K = 1 and as earlier discussed it will toggle
the output state. Thus when input T is HIGH, flip-flop toggles its output on the arrival of
clock, and for this reason input T is called as the Toggle Input. Essentially the T flip-flop
also, suffer from race around condition, (when input is HIGH) and thus causing multiple
transition at output due to same reasons given in example 6.4.

228 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

If the race around problem is some how eliminated then T flip-flop can be used as
frequency divider circuit. To obtain such operation input T is permanently made HIGH and
the frequency to be divided is applied CLK inputs. At the outputs Q and � we receive a
square wave whose time period is now doubled due to which frequency reduces to half of the
input frequency. Note that Q and � generate square waves complementary to each other.

6.1.6 Race Around Condition and Solution
Whenever the width of the trigger pulse is greater than the propagation time of the flip-

flop, then flip-flop continues to toggle 1-0-1-0 until the pulse turns 0. When the pulse turns
0, unpredictable output may result i.e. we don’t know in what state the output is whether
0 or 1. This is called race around condition.

In level-triggered flip-flop circuits, the circuits is always active when the clock signal is
high, and consequently unpredictable output may result. For example, during this active
clock period, the output of a T-FF may toggle continuously. The output at the end of the
active period is therefore unpredictable. To overcome this problem, edge-triggered circuits can
be used whose output is determined by the edge, instead of the level, of the clock signal, for
example, the rising (or trailing) edge.

Another way to resolve the problem is the Master-Slave circuit shown in Fig. 6.31.

Feedback

Inputs

Clock Clock

Master
FF

Slave
FF

Q

Q

Fig. 6.31 Master slave circuit

The operation of a Master-Slave FF has two phases as shown in Fig. 6.32.

• During the high period of the clock, the master FF is active, taking both inputs
and feedback from the slave FF. The slave FF is de-activated during this period by
the negation of the clock so that the new output of the master FF won’t effect it.

• During the low period of the clock, the master FF is deactivated while the slave
FF is active. The output of the master FF can now trigger the slave FF to properly
set its output. However, this output will not effect the master FF through the
feedback as it is not active.

Clock

T

Q

Clock

T

Q
?

Fig. 6.32 Master slave operation

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 229

It is seen that the trailing edge of the clock signal will trigger the change of the output
of the Master-Slave FF. The logic diagram for a basic master-slave S-R flip-flop is shown in
Fig. 6.33.

S

Clock

R Master

Q

Q�

Fig. 6.33 S-R master slave flip-flop

Flip-flops are generally used for storing binary information. One bit of information can
be written into a flip-flop, and later read out from it. If a master-slave FF is used, both read
and write operations can take place during the same clock cycle under the control of two
control signals read and write as shown in Fig. 6.34.

• During the first half of clock cycle : clock = read = write = 1, the old content in
slave-FF is read out, while the new content is being written into master-FF at the
same time.,

• During the second half of clock cycle : clock = read = write = 0, the new content
in master-FF is written into slave-FF.

MS-D-FF

Data-in

Write

Clock

M S Read

Data-outD Q

Fig. 6.34

6.1.7 Operating Characteristics of Flip-flops
The operation characteristics specify the performance, operating requirements, and

operating limitations of the circuits. The operation characteristics mentions here apply to all
flip-flops regardless of the particular form of the circuit.

Propagation Delay Time—is the interval of time required after an input signal has been
applied for the resulting output change to occur.

Set-up Time—is the minimum interval required for the logic levels to be maintained
constantly on the inputs (J and K, or S and R, or D) prior to the triggering edge of the clock
pulse in order for the levels to be reliably clocked into the flip-flop.

Hold Time—is the minimum interval required for the logic levels to remain on the
inputs after the triggering edge of the clock pulse in order for the levels to be reliably clocked
into the flip-flop.

230 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Maximum Clock Frequency—is the highest rate that a flip-flop can be reliably triggered.

Power Dissipation—is the total power consumption of the device.

Pulse Widths—are the minimum pulse widths specified by the manufacturer for the
Clock, SET and CLEAR inputs.

6.1.8 Flip-Flop Applications

Frequency Division
When a pulse waveform is applied to the clock input of a J-K flip-flop that is connected

to toggle, the Q output is a square wave with half the frequency of the clock input. If more
flip-flops are connected together as shown in the figure below, further division of the clock
frequency can be achieved as shown in Fig. 6.35.

HIGH

CLK

J Q

K Q

Q0PR

CLR

J Q

K Q

Q1PR

CLR

Q0

Q1

CLK
1
0

1
0

1
0

Fig. 6.35

The Q output of the second flip-flop is one-fourth the
frequency of the original clock input. This is because the fre-
quency of the clock is divided by 2 by the first flip-flop, then
divided by 2 again by the second flip-flop. If more flip-flops are
connected this way, the frequency division would be 2 to the
power n, where n is the number of flip-flops.

Parallel Data Storage
In digital systems, data are normally stored in groups of

bits that represent numbers, codes, or other information. So,
it is common to take several bits of data on parallel lines and
store them simultaneously in a group of flip-flops. This opera-
tion is illustrated in the Fig. 6.36.

Each of the three parallel data lines is connected to the
D input of a flip-flop. Since, all the clock inputs are con-
nected to the same clock, the data on the D inputs are
stored simultaneously by the flip-flops on the positive edge
of the clock.

D QPR

CLRQ

D0 Q0

D QPR

CLRQ

D1 Q1

D QPR

CLRQ

D2 Q2

Clock

Fig. 6.36

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 231

Another very important application of flip-flops is in digital counters, which are covered
in detail in the chapter 7. A counter that counts from 0 to 2 is illustrated in the timing
diagram given in Fig. 6.37. The two-bit binary sequence repeats every four clock pulses.
When it counts to 3, it recycles back to 0 to begin the sequence again.

PRJ Q

K Q

CLK

HIGH

CLR

PRJ Q

K Q

HIGH

CLR

1

0

1

0

1

0

1 2 3 4 5

0 1 0 1

0 0 1 1
0 1 2 3 0

Q0

Q1

Q0

Q1

CLK

Fig. 6.37

6.2 FLIP-FLOP EXCITATION TABLE
The characteristic table is useful during the analysis of sequential circuits when the

value of flip-flop inputs are known and we want to find the value of the flip-flop output Q after
the rising edge of the clock signal. As with any other truth table, we can use the map method
to derive the characteristic equation for each flip-flop.

During the design process we usually know the transition from present state to the next
state and wish to find the flip-flop input conditions that will cause the required transition. For
this reason we will need a table that lists the required inputs for a given change of state.
Such a list is called the excitation table. There are four possible transitions from present state
to the next state. The required input conditions are derived from the information available
in the characteristic table. The symbol X in the table represents a “don’t care” condition, that
is, it does not matter whether the input is 1 or 0.

The different types of flip flops (RS, JK, D, T) can also be described by their excitation,
table as shown in Fig. 6.38. The left side shows the desired transition from Qn to Qn+1, the
right side gives the triggering signals of various types of FFs needed for the transitions.

Desired transition Triggering signal needed

Qn Qn+1 S R J K D T
0 0 0 x 0 x 0 0
0 1 1 0 1 x 1 1
1 0 0 1 x 1 0 1
1 1 x 0 x 0 1 0

Fig. 6.38 Excitation table

232 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

6.3 FLIP-FLOP CONVERSIONS
This section shows how to convert a given type A FF to a desired type B FF using some

conversion logic.

The key here is to use the excitation table of Fig. 6.38 which shows the necessary triggering
signal (S, R, J, K, D and T) for a desired flip flop state transition Qn → Qn+1 is reproduced here.

Qn Qn+1 S R J K D T

0 0 0 x 0 x 0 0

0 1 1 0 1 x 1 1

1 0 0 1 x 1 0 1

1 1 x 0 x 0 1 0

Example 1. Convert a D-FF to a T-FF:

?T D-FF

Clock

Q�

Q

We need to design the circuit to generate the triggering signal D as a function of T and
Q : D = f (T, Q)

Consider the excitation table:

Qn Qn+1 T D

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 1

Treating D as a function of T and current FF state Q Qn we have

D = T'Q + TQ = T⊕Q

D-FFT

Q

Q�

Clock

Example 2. Convert a RS-FF to a D-FF:

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 233

D
?

S

R Q�

Q

Clock

We need to design the circuit to generate the triggering signals S and R as functions of
D and Q. Consider the excitation table:

Qn Qn+1 D S R

0 0 0 0 X

0 1 1 1 0

1 0 0 0 1

1 1 1 X 0

The desired signal S and R can be obtained as functions of T and current FF state Q
from the Karnaugh maps:

0 0

1 X

0

0

D
Q

0 1

0

0

D
Q

0 1

X

0

1

0

S = D R = D�

S = D, R = D′

S

R

Q

Q�

D

Clock

Example 3. Convert a RS-FF to a JK-FF.

?
J

K

S

R

Q

Q�

Clock

234 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

We need to design the circuit to generate the triggering signals S and R as functions of
J, K and Q. Consider the excitation table.

Qn Qn+1 J K S R

0 0 0 x 0 x

0 1 1 x 1 0

1 0 x 1 0 1

1 1 x 0 x 0

The desired signals S and R as function J, K and current FF state Q can be obtained
from the Karnaugh maps:

0 1

1 1

0

1

K
QJ

00 01

S = Q J�

X X

0 0

11 10

X 0

X 0

0

0

K
QJ

00 01

R = QK

0 0

1 1

11 10

S = Q'J, R = QK

J

K

S

R

Q

Q�

Clock

6.4 ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS
The behaviour of a sequential circuit is determined from the inputs, the outputs and the

states of its flip-flops. Both the output and the next state are a function of the inputs and the
present state.

The suggested analysis procedure of a sequential circuit is depicted through Fig. 6.39.

We start with the logic schematic from which we can derive excitation equations for
each flip-flop input. Then, to obtain next-state equations, we insert the excitation equa-
tions into the characteristic equations. The output equations can be derive from the
schematic, and once we have our output and next-state equations, we can generate the
next-state and output tables as well as state diagrams. When we reach this stage, we use
either the table or the state diagram to develop a timing diagram which can be verified
through simulation.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 235

Logic schematic

Derive excitation equation
(Boolean Expression)

Derive next-state and output
equations

Generate next-state and output
tables

Generate state diagram

Develope timing diagram

Fig. 6.39

Example 1. Modulo-4 counter

Derive the state table and state diagram for the sequential circuit shown in Fig. 6.40.

CLK

FF0
D Q

Q�

FF1
D Q

Q�

x Q� 1

x Q� 1Q0

x Q1Q0 �

x

Fig. 6.40 Logic schematic of a sequential circuit

236 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Solution.

Step 1 : First we derive the Boolean expressions for the inputs of each flip-flops in the
schematic, in terms of external input X and the flip-flop outputs Q1 and Q0. Since there are
two D flip-flops in this example, we derive two expressions for D1 and D0 :

D0 = x⊕Q0 = x′Q0 + xQo′

D1 = x′Q1 + xQ1′Q0 + xQ1Q0′

These Boolean expressions are called excitation equations since they represent the
inputs to the flip-flops of the sequential circuit in the next clock cycle.

Step 2 : Derive the next-state equations by converting these excitation equations into
flip-flop characteristic equations. In the case of D flip-flops, Q(next) = D. Therefore the next
state equal the excitation equations.

Q0(next) = D0 =x′Q0 + xQ0′

Q1(next) = D1 = x′Q1 + xQ1′ Q0′Q0 + xQ1Q0′

Step 3 : Now convert these next-state equations into tabular form called the next-state
table (Fig. 6.41).

Present State Next State

Q1Q0 x = 0 x = 1

0 0 0 0 0 1

0 1 0 1 1 0

1 0 1 0 1 1

1 1 1 1 0 0

Fig. 6.41 Next-state table

Each row is corresponding to a state of the sequential circuit and each column repre-
sents one set of input values. Since we have two flip-flops, the number of possible states is
four, i.e., Q1Q0 can be equal to 00, 01, 10, or 11. These are present states as shown in the
table.

For the next state part of the table, each entry defines the value of the sequential circuit
in the next clock cycle after the rising edge of the CLK. Since this value depends on the
present state and the value of the input signals, the next state table will contain one
column for each assignment of binary values to the input signals. In this example, since there
is only one input signal, x, the next-state table shown has only two columns, corresponding
to x = 0 and x = 1.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 237

Note that each entry in the next-state table indicates the values of the flip-flops in the
next state if their value in the present state is in the row header and the input values in
the column header.

Each of these next-state values has been computed from the next-state equations in
STEP 2.

Step 4 : The state diagram is generated directly from the next-state table, shown in
Fig. 6.42.

00 01

1011

x = 1

x = 0

x = 1

x = 0

x = 1

x = 1

x = 0 x = 0

Fig. 6.42 State diagram

Each are is labelled with the values of the input signals that cause the transition from
the present state (the source of the arc) to the next state (the destination of the arc).

In general, the number of states in a next-state table or a state diagram will equal 2m
where m is the number of flip-flops. Similarly, the number of arcs will equal 2m × 2k, where
k is the number of binary input signals. Therefore, in the state diagram, there must be four
states and eight transitions. Following these transition arcs, we can see that as long as
x = 1, the sequential circuit goes through the states in the following sequence : 0, 1, 2, 3,
0, 1, 2, On the other hand, when x = 0, the circuit stays in its present state until x
changes to 1, at which the counting continues.

Since, this sequence is characteristic of modulo-4 counting, we can conclude that the
sequential circuit in Fig. 6.40 is a modulo-4 counter with one control signal, x, which enables
counting when x = 1 and disables it when x = 0.

Example 2. Derive the next state, the output table and the state diagram for the sequen-
tial circuit shown in Fig. 6.43.

Solution. The input combinational logic in Fig. 6.43 is the same as in Fig. 6.40, so the
excitation and the next-state equations will be same as in previous example.

Excitation equations :

D0 = x⊕Q0 = x′Q0 + xQ0′
D0 = x′Q1 + xQ1′Q0 + xQ1Q0′

238 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

x

CLK

FF0
D Q

Q�

FF1
D Q

Q�

Y

Fig. 6.43 Logic schematic of a sequential circuit

Next-state equations :

Q0(next) = D0 = x′Q0 + xQ0′

Q1(next) = D0 = x′Q1 + xQ1′Q0 + xQ1Q0′

In addition, however, we have computed the output equation.

Output equation : Y = Q1 Q0

As this equation shows, the output Y will equal to 1 when the counter is in state
Q1Q0 = 11, and it will stay 1 as long as the counter stays in that state.

Next-state and output table (Fig. 6.44):

Present State Next State Output

Q1Q0 x = 0 x = 1 Y

00 00 01 0

01 01 10 0

10 10 11 0

11 11 00 1

Fig. 6.44

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 239

00
Y = 0

01
Y = 0

10
Y = 0

11
Y = 1

x = 1

x = 0

x = 1

x = 0

x = 1

x = 1

x = 0 x = 0

Fig. 6.45 State diagram of sequential circuit in Fig. 6.43

6.5 DESIGN OF CLOCKED SEQUENTIAL CIRCUITS
The design of a synchronous sequential circuit starts from a set of specifications and

culminates in a logic diagram or a list of Boolean functions from which a logic diagram can
be obtained. In contrast to a combinational logic, which is fully specified by a truth table, a
sequential circuit requires a state table for its specification. The first step in the design of
sequential circuits is to obtain a state table or an equivalence representation, such as a state
diagram.

The recommended steps for the design of sequential circuits are depicted through
Fig. 6.46.

A synchronous sequential circuit is made up of flip-flops and combinational gates. The
design of the circuit consists of choosing the flip-flops and then finding the combinational
structure which, together with the flip-flops, produces a circuit that fulfils the required
specifications. The number of flip-flops is determined from the number of states needed in
the circuit.

State Table
The state table representation of a sequential circuit consists of three sections labelled

present state, next state and output. The present state designates the state of flip-flops
before the occurrence of a clock pulse. The next state shows the states of flip-flops after
the clock pulse, and the output section lists the value of the output variables during the
present state.

State Diagram
In addition to graphical symbols, tables or equations, flip-flops can also be repre-

sented graphically by a state diagram. In this diagram, a state is represented by a circle,

240 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

and the transition between states is indicated by directed lines (or arcs) connecting the
circles.

Specify the problem
(Word description of the circuit behaviour)

Derive the state diagram

Obtain the state table

The number of states may be reduced
by state reduction method

Choose the type of flip-flops to be used

Determine the number of flip-flops
needed

Derive excitation equations

Using the map or any other simplification
method, derive the output functions and

the flip-flop input functions

Draw the logic diagram

Fig. 6.46

State Diagrams of Various Flip-Flops
Table of Fig. 6.47 shows the state diagrams of the four types of flip-flops.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 241

Q = 0 Q = 1

S, R = 0, 0 S, R = 0, 0
S, R = 1, 0

S, R = 0, 1

SR

Name State Diatram

Q = 0 Q = 1

J, K = 0, 0 J, K = 0, 0JK
J, K = 1, 0 or 1, 1

J, K = 0, 1 or 1, 1

Q = 0 Q = 1

D = 1 D = 1
D = 1

D = 0

D

Q = 0 Q = 1

T = 0 T = 0
T = 1

T = 1

T

Fig. 6.47

One can see from the table that all four flip-flops have the same number of states and
transitions. Each flip-flop is in the set state when Q = 1 and in the reset state when
Q = 0. Also, each flip-flop can move from one state to another, or it can re-enter the same
state. The only difference between the four types lies in the values of input signals that cause
these transitions.

A state diagram is a very convenient way to visualize the operation of a flip-flop or even
of large sequential components.

State Reduction
Any design process must consider the problem of minimizing the cost of the final circuit.

The two most obvious cost reductions are reductions in the number of flip-flops and the
number of gates.

242 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The number of states in a sequential circuit is closely related to the complexity of the
resulting circuit. It is therefore desirable to know when two or more states are equivalent
in all aspects. The process of eliminating the equivalent or redundant states from a state
table/diagram is known as state reduction.

Example. Let us consider the state table of a sequential circuit shown in Fig. 6.48.

State table

Present State Next State Output

x = 0 x = 1 x = 0 x = 1

A B C 1 0

B F D 0 0

C D E 1 1

D F E 0 1

E A D 0 0

F B C 1 0

Fig. 6.48

It can be seen from the table that the present state A and F both have the same next
states, B (when x = 0) and C (when x = 1). They also produce the same output 1 (when
x = 0) and 0 (when x = 1). Therefore states A and F are equivalent. Thus one of the states,
A or F can be removed from the state table. For example, if we remove row F from the
table and replace all F’s by A’s in the columns, the state table is modified as shown in
Fig. 6.49.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 243

State F removed

Present State Next State Output

x = 0 x = 1 x = 0 x = 1

A B C 1 0

B A D 0 0

C D E 1 1

D A E 0 1

E A D 0 0

Fig. 6.49

It is apparent that states B and E are equivalent. Removing E and replacing E’s by B’s
results in the reduce table shown in Fig. 6.50.

Reduced state table

Present State Next State Output

x = 0 x = 1 x = 0 x = 1

A B C 1 0

B A D 0 0

C D B 1 1

D A B 0 1

Fig. 6.50

The removal of equivalent states has reduced the number of states in the circuit from
six to four. Two states are considered to be equivalent if and only if for every input sequence
the circuit produces the same output sequence irrespective of which one of the two states is
the starting state.

244 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

6.6 DESIGN EXAMPLES

Serial Binary Adder
The serial binary adder is capable of adding two binary numbers (say A and B) serially,

i.e., bit by bit. In the addition process, the output at a time instant ti, depends not only in
Ai and Bi bits but also on carry (Ci–1) generated in the previous addition of Ai–1 and Bi–1 bits.
Therefore, the Ci–1 must be memorised and fed back to the input at time ti, i.e., after a time
delay of a unit. Hence, the adder must be able to preserve or memories the carry generated
at any instant of time (say ti–1) upto time ti.

From the above word description, the block diagram of the serial binary adder can be
drawn as shown in Fig. 6.51.

Next state
decoder Memory

C

Next state
i Output

decoder
C

Present
state

i–1

Z

A

B

Fig. 6.51. Block diagram of serial binary adder

In the case of serial adder, the carry generated at any instant of time will either be ‘0’
or 1. Let us designate the carry as the state of the adder. Let X be the state of the adder
at time ti if a carry is generated at time ti–1 and Y be the state if ‘1’ is generated as carry
at time ti–1. The state of the adder at the time (ti) when the present inputs (Ai and Bi) are
applied is referred to as Next State (NS) because this is the state to which the adder goes
due to the new carry. The output of the memory element is called Present State (PS) of the
adder. The output z at time ti depends on inputs at that time (Ai and Bi) and the state of the
adder at that time.

Primitive State Diagram
Now, a primitive state diagram of serial binary adder can be constructed as shown in Fig.

6.52.

X Y

11/0

00/1

00/0
01/1
10/1

(AB/Z)i i i

01/0
10/0
11/1

Fig. 6.52 State diagram of serial binary adder

Primitive State Table
From the primitive state diagram, the primitive state table can be constructed as shown

in Fig. 6.53.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 245

Present State Next state, Output (NS, Z)

(PS) AiBi = 00 01 11 10

X X, 0 X, 1 Y, 0 X, 1

Y X, 1 Y, 0 Y, 1 Y, 0

Fig. 6.53 State table of serial binary adder

There are only two states X and Y which are not redundant since states X and Y are
not equivalent states.

State Assignment
Since there are only two state variables, ‘0’ can be assigned to X and ‘1’ to Y.

Now, using there state assignment, the modified Present State/Next State and output
table can be constructed as shown in Fig. 6.54.

PS Next state (Ci) Output (Z)

Ci–1 AiBi = 00 01 11 10 00 01 11 10

0 0 0 1 0 0 1 0 1

1 0 1 1 1 1 0 1 0

Fig. 6.54 PS/NS and output table

Next step is to select the memory element, i.e., flip-flop, to be used. Suppose D flip-flop
is used as a memory element in serial adder, then the excitation table can be obtained from
PS/NS table using excitation table of D flip-flop as shown in Fig. 6.55.

 D

Ci–1 AiBi = 00 01 11 10

0 0 0 1 0

1 0 1 1 1

Fig. 6.55 Excitation table of serial binary adder

The excitation maps for flip-flop input ‘D’ and output map can be drawn as shown in
Fig. 6.56.

0 0

0 1

0

1

Ci–1

ABi i
00 01

D = A B + B C + C Ai i i i–1 i–1 i

1 0

1 1

11 10

0 1

1 0

0

1

00 01

Z = ABC + AB C + AB C + ABCi i i–1 i i i–1 i i i–1 i i i–1

0 1

1 0

11 10

Z = A B Ci i i � �

Ci–1

ABi i

Fig. 6.56 K-map for excitation and output functions

246 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Using simplified excitation and output function, the circuit diagram for serial adder can
be implemented as shown in Fig. 6.57.

(C)Qi–1

(C)Qi–1

D

Z
Ci

Ci–1

Ai

Bi

Next state decoder Memory element Output decoder

Fig. 6.57 Circuit diagram of serial binary adder

Sequence Detector
The desired sequence can be detected using a logic circuit called sequence detector. Once

we know the sequence which is to be detected, we can design the circuit using state diagram
for it. For a sequence detector that produces and output 1 whenever the sequence 101101 is
detected the designing involves following steps.

From the word description of the problem, one can understand that the sequence detec-
tor is a single input circuit that will accept a stream of bits and generate an output ‘1’
whenever the sequence 101101 is detected. Otherwise, output ‘0’ is generated. For example,
for the input 0101101101, the output 0000001001 will be generated, and for the input 10110101101
the output is 00000100001.

From the above word description, the sequence detector is a block with one input (X)
and output (Z) as shown in Fig. 6.58.

Sequence detectorX Z
OutputInput sequence

Fig. 6.58 Block diagram of sequence detector

Primitive State Diagram
Considering the input sequence 101101 to be detected, let:

A be the initial arbitrary state;

B be the state when the last received one symbol in the input sequence is 1;

C be the state when the last received two symbols in the input sequence is 10;

D be the state when the last received three symbols in the input sequence is 101;

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 247

E be the state when the last received four symbols in the input sequence is 1011; and

F be the state when the last received five symbols in the input sequence is 10110.

A
1/0

B
0/0

1/0

C
1/0

D
1/0

E
0/0

F

0/0
0/0

1/1

1/0

0/0
0/0

Fig. 6.59 State diagram of sequence detector

Primitive State Table
From the primitive state diagram, the primitive present state/next state (PS/NS) and

output table can be drawn as shown in Fig. 6.60.

PS NS, Z

X = 0 X = 1

A A, 0 B, 0

B C, 0 B, 0

C A, 0 D, 0

D C, 0 E, 0

E F, 0 B, 0

F A, 0 D, 1

Fig. 6.60 Primitive PS/NS and output table

From the primitive state table, one can understand that no state is redundant since no
two states are equivalents states. Therefore, the state table cannot be reduced further.

State Assignment
In this step, the following state assignments can be made aribitrarily to the states A to

F. Since there are six states, at least three state variables are required.
A – 000;
B – 001;
C – 010;
D – 011;
E – 100;
F – 101;
Now, using the above state assignment the Present state/Next state and output table can

be modified as shown in Fig. 6.61.

248 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

PS NS

Y3 Y2 Y1 Y3 Y2 Y1 Z

X = 0 X = 1 X = 0 X = 1

0 0 0 000 001 0 0

0 0 1 010 001 0 0

0 1 0 000 011 0 0

0 1 1 010 100 0 0

1 0 0 101 001 0 0

1 0 1 000 011 0 1

Fig. 6.61 PS/NS and output table

Next step is to select the memory element, i.e., flip-flop to be used. If delay flip-flops are
used as memory elements then using the excitation table of delay flip-flop, the excitation
table can be drawn as shown in Fig. 6.62.

PS D3D2D1

y3 y2 y1 x = 0 x = 1

0 0 0 000 001

0 0 1 010 001

0 1 0 000 011

0 1 1 010 100

1 0 0 101 001

1 0 1 000 011

Fig. 6.62 Excitation table of sequence detector

The excitation maps for flip-flop inputs D3, D2, D1 and output map can be drawn as
shown in Fig. 6.63 and the excitation functions and output function can be simplified.

000

y y3 2
00 01 11 10

0 d 1

0 0 d

1 d0

0 0 d

0

0

0

01

11

10

y x1

D = y y x + y y x
Excitation map for D

3 3 1 2 1
3

000

y y3 2
00 01 11 10

0 d 0

0 1 d

0 d0

1 1 d

0

1

0

01

11

10

y x1

D = y y x + y y x +
Excitation map for D

3 2 1 3 1
2

y y x3 1

000

y y3 2
00 01 11 10

0 d 1

1 1 d

0 d1

0 0 d

1

1

0

01

11

10

y x1

D = y x + y y +
Excitation map for D

3 1 1 1
1

xy2

000

y y3 2
00 01 11 10

0 d 0

0 0 d

0 d0

0 0 d

0

1

0

01

11

10

y x1

Z = y y x
Output map for D

3 1
2

Fig. 6.63 K-map simplification for excitation and output functions

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 249

Using the simplified expression for excitation and output functions, the circuit diagram
of sequence detector can be drawn as shown in Fig. 6.64.

y3
D3

y2
D2

y1
D1

Z
X y2

y1

y3
y1

y3y1

y1

y2

y1
y3

y3
y1

y1
y2

Memory element

Next state decoder

Output
decoder

Fig. 6.64 Circuit diagram of sequence detector

The design examples of serial binary adder and sequence detector follow the following steps:

• Obtain the design specifications.

• Identify all inputs and outpouts and may draw block diagram model.

• Draw the primitive state diagram and develop a primitive state table and check for
redundant states.

• Develop a simplified state table after removing redundancy.

• Make a state assignment and using this develop a Present state/Next state (PS/NS)
and output table.

• By selecting memory elements (flip-flop) obtain the excitation table form PS/NS
table using the application table of the flip-flop.

• Derive the next state decoder and output decoder logic by simplify the excitation
and output function using K-maps.

• Draw the schematic diagram.

250 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

6.7 SOLVED EXAMPLES
Example 1. For the state diagram shown in Fig. 6.65. Write state table & reduced state table.

a

c

g

f

d

e

b

0/1

0/0

0/1

1/0

0/0

1/0

0/1

1/1

1/0

0/0

1/1

1/0
0/0

1/1

Fig. 6.65

Solution. From the state diagram, a state table is prepared as shown in Fig. 6.66.

Present State Next state Output

x = 0 x = 1 x = 0 x = 1

a c b 0 0
b d c 0 0
c g d 1 1
d e f 1 0
e f a 0 1
f g f 1 0
g f a 0 1

Fig. 6.66

It has been shown from the table of figure 6.6 that the present state e and g both have
the same next states f (when x = 0) and a (when x = 1). They also produce the same output
0 (when x = 0) and 1 (when x = 1). Therefore, states e and g are equivalent. Thus one of the
states, e or g can be removed from the state table. For example, if we remove raw g from the
table and replace all g’s by e’s in the columns, the state table is modified as shown in Fig. 6.67.

State g removed

Present State Next state Output

x = 0 x = 1 x = 0 x = 1

a c b 0 0
b d c 0 0
c e d 1 1
d e f 1 0
e f a 0 1
 f e f 1 0

Fig. 6.67

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 251

Similarly state d and f are also equivalent, therefore one of them say f, can be eliminated.
After replacing all f’s by d’s in the columns, the reduced state table is given in Fig. 6.68.

Table 6. Reduced state table

Present State Next state Output

x = 0 x = 1 x = 0 x = 1

a c b 0 0

b d c 0 0

c e d 1 1

d e d 1 0

e d a 0 1

Fig. 6.68

Example 2. A sequential circuit has two flip-flops say A and B, two inputs say X and
Y, and an output say Z. The flip-flop input functions and the circuit output function are as
follows :

JA = xB + y′B′
JB = xA′

Z = xy A + x′y′B
KA = xy′B′
KB = xy′ + A

Obtain state table, state diagram and state equations.

Solution.

State table for the problem is shown in Fig. 6.69.

Present state Next state Output z

A B xy = 00 xy = 01 xy = 10 xy = 11 xy = 00 xy = 01 xy = 10 xy = 11

A B A B A B A B

0 0 1 0 0 0 1 1 0 1 0 0 0 0

0 1 0 1 0 1 1 0 1 1 1 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0 0 1

1 1 1 0 1 0 1 0 1 0 1 0 0 1

Fig. 6.69 State table

With the help of state table we can draw the state diagram as shown in figure 6.70.

252 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

00

10

00/0 10/0

00/0
01/0
11/1

01

11

11/0
10/0

11/0

00/1
01/0
10/0
11/1

01/0

00/1
01/0

Fig. 6.70 State diagram

The state equation will be

A (t+1) = xB + Y' + Y A + x'A

B (t+1) = x A'B' + x'AB + Y A'B

Example 3. A clocked sequential circuit has three states, A, B and C and one input X.
As long as the input X is O, the circuit alternates between the states A and B. If the input
X becomes 1 (either in state A or in state B), the circuit goes to state C and remains in the
state C as long as X continues to be 1. The circuit returns to state A if the input becomes 0
once again and from then one repeats its behaviour. Assume that the state assignments are
A = 00, B = 01 and C = 10.

(a) Draw the state diagram.

(b) Give the state table for the circuit.

Solution. (a) First draw circles for 3 states A, B, C and
write state assignments.

The directed line indicate the transition and input on the
directed line are those causes the change on the line. The
figure 6.71. Shows the state diagram.

(b) From the state diagram, a state table is drawn as shown in Fig. 6.72.

State table

Present State Next state Output

x = 0 x = 1 x = 0 x = 1

A B C 0 1

B A C 0 1

C A C 0 1

Fig. 6.72

Given the state assignments A = 00, B = 01, C = 10.

00

A

10
C

01 B

0
1

11

Fig. 6.71

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 253

Example 4. A new clocked x-Y flip-flop is defined with two inputs X and Y in addition
to the clock input. The flip-flop functions as follows :

If XY = 00, the flip-flop changes state with each clock pulse.

If XY = 01, the flip flop state Q becomes 1 with the next clock pulse.

If XY = 10, the flip flop state Q become 0 with the next clock pulse.

If XY = 11, no change of state occurs with the clock pulse.

(a) Write the truth table for the X-Y flip-flop.

(b) Write the Excitation table for the X-Y flip-flop.

(c) Draw a circuit 40 implement the X-Y flip-flop using a J-K flip-flop.

Solution. (a) Truth table for the clocked X-Y flip flop is shown in Fig. 6.73.

Inputs Next state

X Y Qn+1

0 0 Qn

0 1 1

1 0 0

1 1 Qn

Fig. 6.73

(b) The Excitation table for the X-Y flip flop is shown in Fig. 6.74.

Qn Qn+1 X Y

0 0 1 x

0 1 0 x

1 0 x 0

1 1 x 1

 X = don’t care
Fig. 6.74

(c) On comparing Excitation table of X-Y flip-flop with JK flip-flop

X = : Y = !
Therefore, the X-Y flip-flop can be implemented using J-K flip-flop as shown in fig-

ure 6.75.

CLK

X

Y

J

K

Qn

Qn

Fig. 6.75

Example 5. For the digital circuit shown in the figure 6.76. Explain what happens at the
nodes N1, N2, F and � , when

254 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(I) CK =1 and ‘A’ changes from ‘0’ to ‘1’.

(II) A = 1 and ‘CK’ changes from ‘1’ to ‘0’.

(III) CK = 0 and ‘A’ changes from ‘1’ to ‘0’.

(IV) Initially, CK = 0 and ‘A’ changes from 0 to 1, and then CK goes to 1.

(V) What is the circuit performing.

CK

G4

G3 N1
F

F

G2

N2G1

A

Fig. 6.76

Solution.

(I) N1(n) N2(n) CK A G1 G2 G3 G4 N2(n+1) N1(n+1)

0 0 1 1 0 0 0 1 0 0

1 0 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 1 0 0

1 1 1 1 0 0 0 0 0 0

Initially if N1, N2 are 0, it remains at 0. If at 1, they go to 0.

As N1, N2 are at 0, in initially, if F is 1, F is 0. or initially if F = 0, � is 1.

That is F, � do not change their initial states.

(II) N1(n) N2(n) CK A G1 G2 N2(n+1) G3 G4 N1(n+1)

0 0 0 1 0 1 1 0 1 0

1 0 0 1 0 1 1 1 0 1

0 1 0 1 0 1 1 0 1 0

1 1 0 1 0 1 1 1 0 1

N2 continues to be 1 whatever be its initial state. N1 remains at 0 if initially 0, and 1
if initially 1.

If F = 0, � = 0

If N1 = 0, F will become 1 and � = 0

If N1 = 1, F will be 0 and � also 0, which is prohibited state.

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 255

(III) N1(n) N2(n) CK A G1 G2 N2(n+1) G3 G4 N1(n+1)

0 0 0 0 1 0 0 1 0 1

1 0 0 0 1 0 0 1 0 1

0 1 0 0 0 1 1 0 1 0

1 1 0 0 0 1 1 1 0 1

N2 = 0, F = 1, � = 0, N1 = 0, F = 1, N1 = 1, F = 0, � = 1

N2 = 1, F = 1, F = 0, N1 = 0, F = 1, N1 = 1, F = 0, � = 1

(IV) The change of state is similar to (II), CK = 0, A = 1 initially and finally as at (I),
CK = 1, A = 1.

(V) The circuit is functioning as a SR latch.

Example 6. The full adder given in figure 6.77 receives two external inputs x & y; the
third input Z comes from the output of a D flip-flop. The carry output is transferred to the
flip-flop, every clock pulse. The external S output gives the sum of x, y and z. Obtain the state
table and state diagram of the sequential circuit.

Solution.

Full Adder

S

C

x

y

z Q
D

CP

Fig. 6.77

The state table for the given circuit is shown in Fig. 6.78.

State Table

Present state Inputs Next state Output

z x y z S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Fig. 6.78

256 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The state diagram corresponding to state-table of Fig. 6.79.

0 1
00/0
01/1

10/1

01/0
10/0
11/1

11/0

00/1

Fig. 6.79 State diagram

6.8 EXERCISE
1. An R-S latch can be based on cross-coupled NOR gates. It is also possible to contruct an

R'-S' latch using cross-coupled NAND gates.

(a) Draw the R'-S' latch, labelling the R' and S' inputs and the Q and Q' outputs.

(b) Show the timing behaviour across the four configurations of R' and S'. Indicate on
your timing diagram the behaviour in entering and leaving the forbidden state when
R' = S' = 0.

(c) Draw the state diagram that shows the complete input/output and state transition
behaviour of the R'-S' latch.

(d) What is the characteristic equation of the R'-S' latch.

(e) Draw a simple schematic for a gated R-S latch with an extra enable input, using
NAND gates only.

2. Consider a D-type storage element implemented in five different ways :

(a) D-latch (i.e., D wired to the S-input and D’ wired to the R-input of an R-S latch);

(b) Clock Enabled D-latch;

(c) Master-Slave Clock Enabled D-Flip-flop;

(d) Positive Edge-triggered Flip-flop;

(e) Negative Edge-triggered Flip-flop,

Complete the following timing charts indicating the behaviour of these alternative storage
elements. Ignore set-up and hold time limitations (assume all constraints are meant):

CLK

D

D-latch

Clocked D-latch

DM/S Flip-Flop

Positive edge FF

Negative edge FF

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 257

3. Complete the timing diagram for this circuit.

T D

CLK

Q Q

T

CLK

Q

4. Design a circuit that implements the state diagram

1/1 S0 S1

S2
1/1

1/0

0/0

0/1

0/1

5. Design a circuit that implements the state diagram

S0

0/0

1/0

S4
0/0

1/1

S3

S2

S1

0/1 0/1

1/1

0/1
1/0

1/0

258 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

6. A sequential network has one input X and two outputs S and V. X represent a four bit
binary number N, which is input least significant bit first. S represents a four bit binary
number equal to N + 2, which is output least significant bit first. At the time the fourth
input is sampled, V = 1, in N + 2 is too large to be represented by four bits; otherwise
V = 0.

Derive a Mealy state graph and table with a minimum number of states.

7. A sequential network has one input X and two outputs S and V. X represent a four bit
binary number N, which is input least significant bit first. S represents a four bit binary
number equal to N – 2, which is output least significant bit first. At the time the fourth
input is sampled, V = 1, in N – 2 is too small to be represented by four bits; otherwise
V = 0.

Derive a Mealy state graph and table with a minimum number of states

8. Design a synchronous circuit using negative edge-trigered D flip-flops that provides an
output signal Z which has one-fifth the frequency of the clock signal. Draw a timing diagram
to indicate the exact relationship between the clock signal and the output signal Z. To ensure
illegal state recovery, force all unused or illegal states to go to 0.

9. Consider the design of a sequence detector finite state machine that will assert a 1 when
the current input equals the just previously seen input.

(a) Draw as simple state diagrams for a MEALY MACHINE and a MOORE MACHINE
implementation as you can (minimization is not necessary). The MEALY MACHINE
should have fewer states. Briefly explain why.

(b) If the Mealy Machine is implemented as a SYNCHRONOUS MEALY MACHINE, draw
the timing diagram for the example input/output sequence described above.

(c) If the timing behaviours are different for the MOORE, MEALY, and SYNCHRONOUS
MEALY machines, explain the reason why.

10. A sequential circuit is specified by the following flip-flop input functions. Draw the logic
diagram of the circuit.

JA = Bx’ KA = Bx

JB = x KB = A⊕x

11. Design the circuit and draw the logic diagram of the sequential circuit specified by the
following state diagram. Use an RS flip-flop.

0

00

01

10

XY = 0

01

10

11

XY =

XY = 11

XY = 00

12. Complete the truth table for the latch constructed from 2 NOR gates.

S R Q Q’

1 0

0 0 (after S = 1, R = 0)

0 1

0 0 (after S = 0, R = 1)

1 1

SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS 259

1

0

1

0

R(Reset)

S(Set)

Q

Q

13. Construct a logic diagram of a clocked D flip-flop using AND and NOR gates.

14. Explain the master-slave flip-flop constructed from two R-S flip-flop.

15. Draw the logic diagram of a master-slave D flip-flop using NAND gates.

260 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

7.0 INTRODUCTION
Registers are the group of flip-flops (single bit storage element). The simplest type of

register is a data register, which is used for the temporary storage of data. In its simplest
form, it consists of a set of N D flip-flops, all sharing a common clock. All of the digits in the
N bit data word are connected to the data register by an N line “data bus”. Fig. 7.0 shows
a four bit data register, implemented with four D flip-flops.

D

Q

Q

I0 O0

D

Q

Q

I1 O1

D

Q

Q

I2 O2

D

Q

Q

I3 O3

Clock
Fig. 7.0 4-bit D register

The data register is said to be a synchronous device, because all the flip-flops change
state at the same time.

7.1 SHIFT REGISTERS
A common form of register used in many types of logic circuits is a shift register.

Registers like counters, are sequential circuits and as they employ flip-flops they possess
memory; but memory is not the only requirement of a shift register. The function of storage
of binary data can be very well performed by a simple register. Shift registers are required
to do much more than that. They are required to store binary data momentarily until it is
utilized for instance, by a computer, microprocessor, etc. Sometimes data is required to be
presented to a device in a manner which may be different from the way in which it is fed
to a shift register. For instance, shift register can present data to a device in a serial or
parallel form, irrespective of the manner in which it is fed to a shift register. Data can also
be manipulated within the shift register, so that it is presented to a device in the required
form. These devices can also shift left or right and it is this capability which gives them the
name of shift register. Fig. 7.1 show the many ways in which data can be fed into a shift
register and presented by it to a device.

260

C
H

A
P

T
E

R 7
SHIFT REGISTERS AND COUNTERS

SHIFT REGISTERS AND COUNTERS 261

Shift registers have found considerable application in arithmatic operations. Since, mov-
ing a binary number one bit to the left is equivalent to multiplying the number by 2 and
moving the number one bit position to the right amounts to dividing the number by 2. Thus,
multiplications and divisions can be accomplished by shifting data bits. Shift registers find
considerable application in generating a sequence of control pulses.

Serial
Input
1010

Serail
Output
1010

Serial
Input
1001

(a) Serial input/Serial output

Parallel Output
1 0 0 1

(b) Serial input/Parallel output

Serail
Output
1001

(c) Parallel input/Serial output

Parallel Output
1 1 0 1

(b) Parallel input/Parallel output

1 0 0 1
Parallel input

1 1 0 1
Parallel input

Fig. 7.1 Data conversion with a shift register

Shift register is simply a set of flip-flops (usually D latches or RS flip-flops) connected
together so that the output of one becomes the input of the next, and so on in series. It is
called a shift register because the data is shifted through the register by one bit position on
each clock pulse. Fig. 7.2 shows a four bit shift register, implemented with D flip-flops.

D

Q

Q D

Q

Q D

Q

Q D

Q

Qin out

Clock

Fig. 7.2 4-bit serial-in serial-out shift register

On the leading edge of the first clock pulse, the signal on the DATA input is latched in
the first flip-flop. On the leading edge of the next clock pulse, the contents of the first flip-
flop is stored in the second flip-flop, and the signal which is present at the DATA input is
stored is the first flip-flop, etc. Because the data is entered one bit at a time, this called a
serial-in shift register. Since there is only one output, and data leaves the shift register one
bit at a time, then it is also a serial out shift register. (Shift registers are named by their
method of input and output; either serial or parallel.) Parallel input can be provided through
the use of the preset and clear inputs to the flip-flop. The parallel loading of the flip-flop can
be synchronous (i.e., occurs with the clock pulse) or asynchronous (independent of the clock
pulse) depending on the design of the shift register. Parallel output can be obtained from the
outputs of each flip-flop as shown in Fig. 7.3.

262 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

D

Q

Q D

Q

Q D

Q

Q D

Q

Qin

Clock

O0 O1 O2 O3

Fig. 7.3 4-bit serial-in parallel-out shift register

Communication between a computer and a peripheral device is usually done serially,
while computation in the computer itself is usually performed with parallel logic circuitry. A
shift register can be used to convert information from serial form to parallel form, and vice
versa. Many different kinds of shift registers are available, depending upon the degree of
sophistication required.

Here we deal with the basic characteristics of shift registers and their applications.
Normally shift registers are obtained through D-Flip-Flops. However, if required other flip-
flops may also be used. D-Flip-Flops are used because of simplicity that data presented at
input is available at the output. Throughout the chapter it is our strategy to discuss all the
shift registers using D-flip-flops only. If one need to use some other Flip-Flop, say JK Flip-
Flip, then we recommend following procedure–

1. Design the shift register using D-flip-flops only.

2. Take JK Flip-Flip and convert it into D Flip-Flop.

3. Replace each of the D-Flip-Flop of step1 by the
flip-flop obtained in step 1 after conversion.

To elaborate this let us consider the shift register
shown in Fig. 7.2.

Step 1: It is readily obtained in Fig. 7.2.

Step 2: Convert JK into D-Flip-Flop. It is shown
below in Fig. 7.4

Step 3: Replace each D-Flip-Flop of Fig. 7.2 by
the one shown in Fig. 7.4.

J

Q

Q

Clock

In

K

J

Q

Q

K

J

Q

Q

K

J

Q

Q

K

Out

Fig. 7.5 (a) 4-bit serial in serial out shift register using JK Flip-Flop

J

Q

Q

Clock

In

K

J

Q

Q

K

J

Q

Q

K

J

Q

Q

K

OutD

FF0 FF1 FF2 FF3

Fig. 7.5 (b) 4-bit serial in–serial out shift register using JK Flip-flop

J

Q

Q

Clock

D

K

Fig. 7.4 JK Flip-flop converted
into D-Flip-Flop

SHIFT REGISTERS AND COUNTERS 263

OPERATION
A 4-bit shift register constructed with D type flip-flop (Fig. 7.2) and JK flip-flop (Fig. 7.5).

By addition or deletion of flip-flop more or fewer bits can be accommodated. Except for FF0,
the logic level at a data input terminal is determined by the state of the preceding flip-flop.
Thus, Dn is 0 if the preceding flip-flop is in the reset state with Qn–1 = 0, and Dn = 1 if
Qn–1 = 1. The input at FF0 is determined by an external source.

From the characteristic of D-flip-flop we know that immediately after the triggering
transition of the clock, the output Q of flip-flop goes to the state present at its input D just
before this clock transition. Therefore, at each clock transition, pattern of bits, 1s and 0s, is
shifted one flip-flop to the right. The bit of the last flip-flop (FF3 in Fig. 7.6) is lost, while the
first flip-flop (FF0) goes to the state determined by its input D0. This operation is shown in
Fig. 7.6. We have assumed that the flip-flop triggers on the positive-going transition of the
clock waveform, and initially we have D0 = 0, FF0 = 1 and FF2 = FF3 = FF4 = 0.

1

0

1

0

1

0

1

0
1

0

Clock
Rules

1 2 3 4 5

FF0
1

FF1
0

FF2
0

FF3
0

FF0
0

FF1
1

FF2
0

FF3
0

FF0
0

FF1
0

FF2
1

FF3
0

FF0
0

FF1
0

FF2
0

FF3
1

Fig. 7.6 A 4-bit shift register operation

7.2 MODES OF OPERATION
This section describes, the basic modes of operation of shift registers such as Serial In-

Serial Out, Serial In-Parallel Out, Parallel In-Serial Out, Parallel In-Parallel Out, and bi-
directional shift registers.

7.2.1 Serial In–Serial Out Shift Registers
A basic four-bit shift register can be constructed using four D-flip-flops, as shown in

Fig. 7.7. The operation of the circuit is as follows. The register is first cleared, forcing all four
outputs to zero. The input data is then applied sequentially to the D input of the first flip-
flop on the left (FF0). During each clock pulse, one bit is transmitted from left to right.
Assume a data word to be 1001. The least significant bit of the data has to be shifted through
the register from FF0 to FF3.

264 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

D

Q

Q D

Q

Q D

Q

Q D

Q

Q Data output

CLK

Data input PR

CLR CLR CLR CLR

CLEAR

CLEAR
FF0 FF1 FF2 FF3

0 0 0 0

FF0 FF1 FF2 FF3
PR PR PR

Fig. 7.7

In order to get the data out of the register, they must be shifted out serially. This can
be done destructively or non-destructively. For destructive readout, the original data is lost
and at the end of the read cycle, all flip-flops are reset to zero.

To avoid the loss of data, an arrangement for a non-destructive reading can be done by
adding two AND gates, an OR gate and an inverter to the system. The construction of this
circuit is shown in Fig. 7.8.

FF0 FF1 FF2 FF3

CLK
Input data

R/W control

Output data

Fig. 7.8

The data is loaded to the register when the control line is HIGH (i.e. WRITE). The

data can be shifted out of the register when the control line is LOW (i.e. READ).

7.2.2 Serial In-Parallel Out Shift Registers
For this kind of register, data bits are entered serially in the same manner as discussed

in the last section. The difference is the way in which the data bits are taken out of the
register. Once the data are stored, each bit appears on its respective output line, and all bits
are available simultaneously. A construction of a four-bit serial in-parallel out register is
shown in Fig. 7.9.

D

Q

Q D

Q

Q D

Q

Q

CLK

Input data
D

Q

Q

CLR CLR CLR CLR

CLEAR

FF0 FF1 FF2 FF3

Q0 Q1 Q2 Q3

PR PR PR PR

Fig. 7.9

SHIFT REGISTERS AND COUNTERS 265

7.2.3 Parallel In-Serial Out Shift Registers
A four-bit parallel in-serial out shift register is shown in Fig. 4.10. The circuit uses

D-flip-flops and NAND gates for entering data (i.e., writing) to the register.

D0, D1, D2 and D3 are the parallel inputs, where D0 is the most significant bit and D3
is the least significant bit. To write data in, the mode control line is taken to LOW and the
data is clocked in. The data can be shifted when the mode control line is HIGH as SHIFT
is active high. The register performs right shift operation on the application of a clock pulse.

D

Q

Q

CLR

D

Q

Q

CLR

D

Q

Q

CLR

D

Q

Q

CLR

Output
dataCLK

CLEAR

WRITE/
SHIFT

D0 D1 D2 D3

PR PR PR PR

Fig. 7.10

7.2.4 Parallel In-Parallel Out Shift Registers
For parallel in-parallel out shift registers, all data bits appear on the parallel outputs

immediately following the simultaneous entry of the data bits. The following circuit is a four-
bit parallel in-parallel out shift register constructed by D-flip-flops.

D

Q

Q D

Q

Q D

Q

Q

CLEAR

D

Q

Q

CLR CLR CLR CLR

Q0 Q1 Q2 Q3
CLK

D0 D1 D2 D3

PR PR PR PR

Fig. 7.11

The D’s are the parallel inputs and the Q’s are the parallel outputs. Once the register
is clocked, all the data at the D inputs appear at the corresponding Q outputs simultaneously.

7.2.5 Bidirectional Shift Registers (Universal Shift Register)
The registers discussed so far involved only right shift operations. Each right shift

operation has the effect of successively dividing the binary number by two. If the operation
is reversed (left shift), this has the effect of multiplying the number by two. With suitable
gating arrangement a serial shift register can perform both operations.

266 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

A bi-directional, or reversible shift register is one in which the data can be shift
either left or right. A four-bit bi-directional shift register using D-flip-flops is shown in
Fig. 7.12.

Here a set of NAND gates are configured as OR gates to select data inputs from the right
or left adjacent bistables, as selected by the ���� /RIGHT control line.

D

Q

Q

CLR

D

Q

Q

CLR

D

Q

Q

CLR

D

Q

Q

CLR

Output

CLEAR

CLK

MSB

LEFT/RIGHT

Input data

PR PR PR PR

Fig. 4.12

7.3 APPLICATIONS OF SHIFT REGISTERS
Shift registers can be found in many applications. Here is a list of a few.

7.3.1 To Produce Time Delay
The serial in-serial out shift register can be used as a time delay device. The amount

of delay can be controlled by:

• the number of stages in the register (N)

• the clock frequency (f)

The time delay ∆T is given by

∆T = N* f

7.3.2 To Simplify Combinational Logic
The ring counter technique can be effectively utilized to implement synchronous sequen-

tial circuits. A major problem in the realization of sequential circuits is the assignment of
binary codes to the internal states of the circuit in order to reduce the complexity of circuits
required. By assigning one flip-flop to one internal state, it is possible to simplify the com-
binational logic required to realize the complete sequential circuit. When the circuit is in a
particular state, the flip-flop corresponding to that state is set to HIGH and all other flip-flops
remain LOW.

SHIFT REGISTERS AND COUNTERS 267

7.3.3 To Convert Serial Data to Parallel Data
A computer or microprocessor-based system commonly requires incoming data to be in

parallel format. But frequently, these systems must communicate with external devices that
send or receive serial data. So, serial-to-parallel conversion is required. As shown in the
previous sections, a serial in-parallel out register can achieve this.

7.4 COUNTERS

7.4.1 Introduction
Both counters and registers belong to the class of sequential circuits. Here we will

mainly deal with counters and also consider design procedures for sequential logic circuits.
As the important characteristic of these circuits is memory, flip-flops naturally constitute the
main circuit element of these devices and, therefore, there will be considerable emphasis on
their application in circuit design.

You must already be familiar with some sequential devices, in which operations are
performed in a certain sequence. For instance, when you dial a phone number, you dial it in
a certain sequence, if not, you cannot get the number you want. Similarly, all arithmetic
operations have to be performed in the required sequence.

While dealing with flip-flops, you have dealt with both clocked and unclocked flip-flops.
Thus, there are two types of sequential circuits, clocked which are called synchronous, and
unclocked which are called asynchronous.

In asynchronous devices, a change occurs only after the completion of the previous
event. A digital telephone is an example of an asynchronous device.

If you are dialing a number, say 6354, you will first punch 6 followed by 3, 5 and 4. The
important point to note is that, each successive event occurs after the previous event has
been completed.

Sequential logic circuits find application in a variety of binary counters and storage devices
and they are made up of flip-flops. A binary counter can count the number of pulses applied at
its input. On the application of clock pulses, the flip-flops incorporated in the counter undergo
a change of state in such a manner that the binary number stored in the flip-flops of the counter
represents the number of clock pulses applied at the input. By looking at the counter output,
you can determine the number of clock pulses applied at the counter input.

Digital circuits use several types of counters which can count in the pure binary form
and in the standard BCD code as well as in some special codes. Counters can count up as well
as count down. In this section we will be looking at some of the counters in common use in
digital devices.

Another area of concern to us will be the design of sequential circuits. We will be
considering both synchronous and asynchronous sequential circuits.

7.4.2 Binary Ripple Up-Counter
We will now consider a 3-bit binary up-counter, which belongs to the class asynchronous

counter circuits and is commonly known as a ripple counter. Fig. 7.13 shows a 3-bit counter,
which has been implemented with three T-type (toggle) flip-flops. The number of states of which
this counter is capable is 23 or 8. This counter is also referred to as a modulo 8 (or divide by
8) counter. Since a flip-flop has two states, a counter having n flip-flops will have 2n states.

268 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

When clock pulses are applied to a ripple counter, the counter progresses from state to
state and the final output of the flip-flop in the counter indicates the pulse count. The circuit
recylces back to the starting state and starts counting all over again.

Fig. 7.13 3-Bit binary up-counter

There are two types of ripple counters, (a) asynchronous counters and (b) synchronous
counters. In asynchronous counters all flip-flops are not clocked at the same time, while in
synchronous counters all flip-flops are clocked simultaneously.

You will notice from the diagram that the normal output, Q, of each flip-flop is connected
to the clock input of the next flip-flop. The T inputs of all the flip-flops, which are T-type, are
held high to enable the flip-flops to toggle (change their logic state) at every transition of the
input pulse from 1 to 0. The circuit is so arranged that flip-flop B receives its clock pulse from
the QA output of flip-flop A and, as a consequence, the output of flip-flop B will change its logic
state when output QA of flip-flop A changes from binary 1 to 0. This applies to all the other
flip-flops in the circuit. It is thus an asynchronous counter, as all the flip-flops do not change
their logic state at the same time.

Let us assume that all the flip-flops have been reset, so that the output of the counter
at the start of the count is 0 0 0 as shown in the first row of Table 7.1. Also refer to Fig.
7.14 which shows the output changes for all the flip-flops at every transition of the input pulse
from 1 → 0.

Fig. 7.14 Waveform for 3-bit binary ripple up-counter

When the trailing edge of the first pulse arrives, flip-flop A sets and QA becomes 1, which
does not affect the output of flip-flop B. The counter output now is as shown in row 2 of the
table. As a result of the second clock pulse, flip-flop A resets and its output QA changes from
1 to 0, which sets flip-flop B and the counter output now is as shown in row 3 of the table.

SHIFT REGISTERS AND COUNTERS 269

When the third clock pulse arrives, flip-flop A sets and its output QA becomes 1, which does
not change the state of the B or the C flip-flop. The counter output is now as shown in row 3
of the table. When the fourth pulse occurs, flip-flop A resets and QB becomes 0 which in turn
resets flip-flop B and QB becomes 0, which sets flip-flop C and its output changes to 1.

Table 7.1 Count-up sequence of a 3-bit binary counter

Input pulse Count

22 21 20

Qc QB QA

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1 RECYCLE

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

When the 5th clock pulse arrives, flip-flop A sets and QA becomes 1; but the other flip-
flops remain unchanged. The number stored in the counter is shown in the 6th row of the
table. The 6th pulse resets flip-flop A and at the same time flip-flop B and C are set. The 7th
pulse sets all the flip-flops and the counter output is now shown in the last row of the table.

The next clock pulse will reset all the flip-flops, as the counter has reached its maximum
count capability. The counter has in all 8 states. In other words, it registers a count of 1 for
every 8 clock input pulses. It means that it divides the number of input pulses by 8. It is thus
a divide by 8 counter.

Count Capability of Ripple Counters
If you refer to Table 7.1 and the waveform diagram, Fig. 7.14, it will be apparent to you

that the counter functions as a frequency divider. The output frequency of flip-flop A is half
the input frequency and the output of flip-flop B is one-fourth of the clock input frequency.
Each flip-flop divides the input frequency to it by 2. A 3-bit counter will thus divide the clock
input frequency by 8.

Another important point about counters is their maximum count capability. It can be
calculated from the following equation

N = 2n – 1
where N is the maximum count number and

 n is the number of flip-flops.
For example, if n = 12, the maximum count capability is

N = 212 – 1 = 4095
If you have to calculate the number of flip-flops required to have a certain count capa-

bility, use the following equation :
n = 3.32 log10 N

For example, if the required count capability is 5000
n = 3.32 log10 5000 = 12.28

which means that 13 flip-flops will be required.

270 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Counting Speed of Ripple Counters
The primary limitation of ripple counters is their speed. This is due to the fact that each

successive flip-flop is driven by the output of the previous flip-flop. Therefore, each flip-flop in the
counter contributes to the total propagation delay. Hence, it takes an appreciable time for an
impulse to ripple through all the flip-flops and change the state of the last flip-flop in the chain.
This delay may cause malfunction, if all the flip-flops change state at the same time. In the
counter we have just considered, this happens when the state changes from 011 to 100 and from
111 to 000. If each flip-flop in the counter changes state during the course of a counting operation,
and if each flip-flop has a propagation delay of 30 nanoseconds, a counter having three flip-flops
will cause a delay of 90 ns. The maximum counting speed for such a flip-flop will be less than.

�

��
���� or 11.11 MHz.

If the input pulses occur at a rate faster than 90 ns, the counter output will not be a
true representation of the number of input pulses at the counter. For reliable operation of
the counter, the upper limit of the clock pulses of the counter can be calculated from

f =
�

���
��

�

where, n is the number of flip-flops and

 t is the propagation delay of each flip-flop.

7.4.3 4-Bit Binary Ripple Up-Counter
A 4-bit binary ripple up-counter can be built with four T-type flip-flops. The diagram will

follow the same pattern as for a 3-bit up-counter. The count-up sequence for this counter is given
in Table 7.2 and a waveform diagram is given in Fig. 7.15. After the counter has counted up to

Table 7.2 Count-up sequence of a 4-bit binary up-counter

Input pulse Count
23 22 21 20

QD QC QB QA

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0 RECYCLE
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

16 or 0 0 0 0 0

SHIFT REGISTERS AND COUNTERS 271

1111, it recycles to 0000 like the 3-bit counter. You must have observed that each flip-flop divides
the input frequency by, 2 and the counter divides the frequency of the clock input pulses by 16.

C
lo

ck

1 0 1 0 1 0 1 0 1 0

Q
A

Q
B

Q
C

Q
D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0

0
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0

0
0

0
0

1
1

1
1

0
0

0
0

1
1

1
1

0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

0

Fig. 7.15 Waveform for 4-bit binary up-counter

272 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

7.4.4 3-Bit Binary Ripple Down Counter
The binary ripple up-counter we have just considered increases the count by one, each

time a pulse occurs at its input. The binary ripple down counter which we are going to
consider in this section decreases the count by one, each time a pulse occurs at the input.
A circuit for a 3-bit down counter is given in Fig. 7.16. If you compare this counter with the
up-counter in Fig. 7.13 the only difference you will notice is that, in the down counter in
Fig. 7.16 the complement output 	
 instead of the normal output, is connected to the clock
input of the next flip-flop. The counter output which is relevant even in the down counter is
the normal output, Q, of the flip-flops.

QA QB QC

QCQBQA1 1 1

Clock
Pulses

Q Q Q

T T T

Fig. 7.16 3-bit binary ripple down counter

We can now analyse the circuit and examine its operation. It will help you to follow the
operation of the counter, if you refer to Table 7.3 and waveform of the counter given in
Fig. 7.17 for each input pulse count. Let us assume that the counter is initially reset, so that
the counter output is 0 0 0. When the first input pulse is applied, flip-flop A will set, and its
complement output will be 0. This will set flip-flop B, as there will be a 1 → 0 transition at
the clock input. The counter output will now be 1 1 1.

Table 7.3 Count-down sequence of a 3-bit binary counter

Clock pulse Count

22 21 20

QC QB QA

0 0 0 0

1 1 1 1

2 1 1 0

3 1 0 1

4 1 0 0 RECYCLE

5 0 1 1

6 0 1 0

7 0 0 1

8 0 0 0

When the second clock pulse is applied, flip-flop A will reset and its complement output
will become 1, which will not affect the other flip-flops. The counter output will now be 1 1
0 as shown in row 3 of the Table 7.3.

When the third clock pulse occurs, flip-flop A will set and its complement output will
become 0, which will reset flip-flop B, its output becomes 0, and the complement output will

SHIFT REGISTERS AND COUNTERS 273

be 1, which will not affect the other flip-flops. The counter will now show an output of 1 0
1, as in the fourth row of the table.

You will notice that every clock pulse decrements the counter by 1. After the eighth clock
pulse, the counter output will be 0 0 0 and the counter will recycle thereafter.

The waveform for this 3-bit down counter is given in Fig. 7.17.

Fig. 7.17 Waveform for 3-bit binary down-counter

7.4.5 Up-Down Counters
The counters which we have considered so far can only count up or down; but they

cannot be programmed to count up or down. However, this facility can be easily incorporated
by some modification in the circuitry. You might recall that in an up-counter the normal
output of a flip-flop is connected to the clock input of the following flip-flop, and in a down
counter it is the complement output which is connected to the clock input of the following
flip-flop. The change from normal to complement connection to the clock input of the follow-
ing flip-flop can be easily managed. A circuit for this purpose is shown in Fig. 7.18.

The normal and complement outputs of flip-flops are connected to AND gates D and E
and the output of the AND gates goes to the clock input of the next flip-flop via OR gates F.
When the up-down control is binary 1, gates D and F are enabled and the normal output of
each flip-flop is coupled via OR gates F to the clock input of the next flip-flop. Gates E are
inhibited, as one input of all these gates goes low because of the Inverter. The counter,
therefore, counts up.

When the up-down control is binary 0, gates D are inhibited and gated E are enabled.
As a consequence the complement output of each flip-flop is coupled via OR gates F to the
clock input of the next flip-flop. The counter, therefore, counts down.

Clock

J Q

QK

D

E

FCLK
A

J Q

QK

D

E

FCLK
B

J Q

QK

CLK
C

Up down
control

Fig. 7.18 Up-down counter

274 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

7.4.6 Reset and Preset Functions
Reset and Preset functions are usually necessary in most counter applications. When

using a counter you would, in most cases, like the counter to begin counting with no prior
counts stored in the counter. Resetting is a process by which all flip-flops in a counter are
cleared and they are thus in a binary O state. JK flip-flops have a CLEAR or RESET input
and you can activate them to reset flip-flops. If there are more than one flip-flop, the reset
inputs of all flip-flops are connected to a common input line as shown in Fig. 7.19.

You will notice that the reset inputs of all the flip-flops in the counter are active low, and
therefore, to reset the counter you take the reset input line low and then high. The output
of the counter will then be 0 0 0 0.

At times you may want the counter to start the count from a predetermined point. If you
load the required number into the counter, it can start counting from that point. This can
be easily accomplished by using the arrangement shown in diagram. The preset inputs of all
the flip-flops are connected to NAND gate outputs. One input of each NAND gate is connected
to a common PRESET line and the desired number is fed into the other inputs of the NAND
gates. To load a number into the counter, first clear the counter and then feed the required
number into the NAND gates as indicated in the diagram. When you take the PRESET line
high momentarily, the output of NAND gates 1 and 4 will be 1, so flip-flops A and D will
remain reset. The output of gates 2 and 3 will be 0 and so flip-flops B and C will be set. The
number stored in the counter will now be 0 1 1 0, which is the number required to be loaded
in the counter.

J Q

K Q

CLK A

PR

CLR

Counter
Input

Reset

QA

1

J Q

K Q

CLK B

CLR

QB

2

J Q

K Q

CLK C

CLR

QC

3

J Q

K Q

CLK D

CLR

QD

4

Preset

+VCC

0 1 1 0

PR PR PR

Fig. 7.19

It is also possible to load a number in a counter in a single operation, by using the
arrangement shown in Fig. 7.20.

The arrangement for data transfer, which is a single pulse operation makes use of the
Preset and Clear inputs of the flip-flops. When the clock pulse is low, the output of both
NAND gates 1 and 2 is high, which has no effect on the Preset and Clear inputs of the flip-
flop and there is no change in its output. If the D0 input is high, the output of NAND gate
1 will go low when the clock pulse goes high. This will result in output QA going high at the
same time. Since one input of NAND gate 2 will be low at this time, the clear input to the
flip-flop remains high.

SHIFT REGISTERS AND COUNTERS 275

2 1

J Q

K Q

CLK A

CLR

QA

D0

J Q

K Q

CLK B

CLR

D1

J Q

K Q

CLK C

CLR

D2

J Q

K Q

CLK D

CLR

D3

QB QC QD

Clock
Input

PR PR PR PR

Fig. 7.20 Single pulse data transfer

If the D0 input is low and the clock pulse goes high, the output of NAND gate 1 will
remain high, which will have no effect on the Preset input. The output of NAND gate 2 will
go low, which will clear the flip-flop and QA will go low.

7.4.7 Universal Synchronous Counter Stage
The up and down counters which we have considered so far are asynchronous counters,

also known as ripple counters, for the simple reason that, following the application of a clock
pulse, the count ripples through the counter, since each successive flip-flop is driven by the
output of the previous flip-flop. In a synchronous counter, all flip-flops are driven simultane-
ously by the same timing signal.

The asynchronous counter, therefore, suffers from speed limitation as each flip-flop
contributes to the total propagation delay. To overcome this draw-back, flip-flops with lower
propagation delay can be used; but the ideal solution is to use synchronous counters. In these
counters the circuit is so arranged that triggering of all flip-flops is done simultaneously by
the input signal, which is to be counted. In these counters the total propagation delay is the
delay contributed by a single flip-flop.

J

K

CLK A

Q

Q

1

CLK

CLR

1 2
QA

J

K

CLK B

Q

Q

QB

J

K

CLK C

Q

Q

QC

J

K

CLK D

Q

Q

QD

Fig. 7.21 (a) Synchronous counter

The design concept used in the synchronous counter shown in Fig. 7.21 (a) uses counter
stage blocks and this design concept lends itself to building large synchronous counters.
Counter modules of the type used in this circuit and also shown separately in Fig. 7.21 (b)
can be interconnected to build counters of any length.

276 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

J

K

CLK

Q

Q

Carry
Input

Carry
Output

Clock

Fig. 7.21 (b) Universal counter stage block

Let us consider the synchronous counting circuit shown in Fig. 7.21(a). It is a 4-bit
counter and the clock inputs of all the flip-flops are connected to a common clock signal,
which enables all flip-flops to be triggered simultaneously. The clear inputs are also connected
to a common clear input line. The J and K inputs of each flip-flop are connected together, so
that they can toggle when the JK input is high. The JK input of flip-flop A is held high. Also
notice the two AND gates 1 and 2, and the way they are connected. Gate 1 ensures that the
JK input to flip-flop C will be binary 1 when both inputs QA and QB are binary 1. AND gate
2 ensures that the JK input to flip-flop D will be binary 1 only when outputs QA, QB and QC
are binary 1.

We can now look into the output states required for the flip-flops to toggle. This has been
summarized below :

1. Flip-flop A toggles on negative clock edge.

2. Flip-flop B toggles when QA is 1

3. Flip-flop C toggles when QA and QB are 1

4. Flip-flop D toggles when QA, QB are QC are 1

This means that a flip-flop will toggle only if all flip-flops preceding it are at binary
1 level.

We can now look into the counting process of this counter. We begin by resetting the
counter, which is done by taking CLR temporarily low.

MSB LSB

QD QC QB QA

0 0 0 0

Since, QA is low and J and K are high, the first negative clock edge will set flip-flop A.
The counter output will now be as follows:

QD QC QB QA

0 0 0 1 After 1st clock pulse.

When the second negative clock edge occurs, both A and B flip-flops will toggle and the
counter output will change to the following:

QD QC QB QA

0 0 1 0 After 2nd clock pulse.

SHIFT REGISTERS AND COUNTERS 277

When the third clock pulse arrives, flip-flop B will not toggle as QA is 0 but flip-flop A
will toggle. The counter will show the following output.

QD QC QB QA

0 0 1 1 After 3rd clock pulse.

The fourth clock pulse will toggle flip-flops A, B and C, as both QA and QB are 1. The
counter output is now as follows:

QD QC QB QA

0 1 0 0 After 4th clock pulse.

The counter will continue to count in the binary system until the counter output
registers 1 1 1 1, when it will be reset by the next clock pulse and the counting cycle will
be repeated.

7.4.8 Modulus Counters
The modulus of a counter, as discussed before, is the number of discrete states a

counter can take up. A single flip-flop can assume only two states 0 and 1, while a counter
having two flip-flops can assume any one of the four possible states. A counter with three
flip-flops will have 8 states and so on. In short the number of states is a multiple of 2.
With n flip-flops the number of possible states will be 2n. Thus by building counters which
count in the normal binary sequence, we can build counters with modulus of 2, 4, 8, 16
etc. In these counters the count increases or decreases by 1 in pure binary sequence. The
problem arises in building counters whose modulus is 3, 5, 7, 9 etc. For instance, if we
need, a counter with a modulus of 3, we have to use a counter with a modulus of 4 and
so arrange the circuit that it skips one of the states. Similarly, for a counter with a
modulus of 5 we require 23 or 8 states and arrange the circuit so that it skips 3 states
to give us a modulus of 2n – 3 or 5 states. Thus for a modulus N counter the number n
of flip-flops should be such that n is the smallest number for which 2n > N. It, therefore,
follows that for a decade (mod-10) counter the number of flip-flops should be 4. For this
counter we shall have to skip 24 – 10 or 6 states. Which of these states are to be skipped
is a matter of choice, which is largely governed by decisions which will make the circuit
as simple as possible.

Many methods have been developed for designing such counters. We will consider the
following:

(1) Counter Reset Method
In this method, the counter is reset after the desired count has been reached and the

count cycle starts all over again from the reset state.

(2) Logic Gating Method
This method provides the exact count sequence required without any need to reset the

counter at some stage.

278 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(3) Counter Coupling Method
This method is used to implement counters of the required modulus. For instance we

can interconnect mod-2 and mod-3 counters to implement a modulus 3 × 2 or mod-6 counter.

7.4.9 Asynchronous Counters (Counter Reset Method)
Let us first consider the typical case of a counter which has 3 states as shown in

Fig. 7.22.

Mod-3 Counter

0

2 1

Fig. 7.22 State diagram for a mod-3 counter

It is obvious that a mod-3 counter will require two flip-flops which, when connected as
a counter, will provide four states as shown in Table 7.4.

Table 7.4 States for a two flip-flop counter

QA QB Count value

LSB (Decimal)

0 0 0

1 0 1

0 1 2

1 1 3

0 0 0

This counter counts in the binary sequence 0, 1, 2, 3 and then it returns to 0, the
starting point. Each count is referred to as a state. If we are building a mod-3 counter, the
most convenient solution is to skip state 3 and then return to state 0 from state 2 and then
again go through states 0, 1, 2 before returning to state 0. What we need is a combinational
logic circuit, which will feed a reset pulse to the counter during state 3, and immediately after
state 2, which is the last desired state. This reset pulse is applied to the CLR inputs which
resets the counter to 0 after state 2.

A circuit diagram for a mod-3 counter together with the required combinational logic is
given in Fig. 7.23.

When both outputs QA and QB are 1, the output of the NAND gate, which provides the
reset pulse, goes low and both the flip-flops are reset. The counter returns to state 0 and it
starts counting again in 0, 1, 2, 0 sequence. The waveforms for this counter are given in
Fig. 7.24.

SHIFT REGISTERS AND COUNTERS 279

J

A

Q

K

Clock

Q

Reset

QA

J

B

Q

K Q

QB

11

Fig. 7.23 Modulo-3 counter

Fig. 7.24 Waveform for mod-3 counter

Mod-5 Counter
The minimum number of flip-flops required to implement this counter is three. With

three flip-flops, the number of states will be 8. A modulo-5 counter will have only 5 states.
A state diagram for this counter is given in Fig. 7.25. It will progress from state 000 through
100. The truth table for this counter, which will determine the stage at which the reset pulse
should be applied, is given in Table 7.5.

0

4

3 2

1 001

010011

100

000

Fig. 7.25 State diagram for mod-5 counter

280 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The truth table shows that state 5 will be the reset state and that states 6 and 7 will
be the don’t care states. The next step is to plot the states on a map as shown in Fig. 4.39.

Table 7.5 Truth table for Mod-5 Counter

QA QB QC State

LSB

0 0 0 0

1 0 0 1

0 1 0 2

1 1 0 3

0 0 1 4

1 0 1 5

0 1 1 6 X

1 1 1 7 X

X, Don’t care states

0

0

0

4

X

6

0

2

A 0

0

1

1

5

X

7

0

3

A 1

B C B C
00 01

B C
11

B C
10

Fig. 7.26

The map shows that the reset pulse is determined by � � 	 	 	 � �� � � The logic diagram
for this counter is given in Fig. 7.27. The diagram shows that a reset pulse will be applied
when both A and C are 1. You may have noticed that the reset pulse shown in Fig. 7.24 for
the Mod-3 counter was very narrow and in some cases it may not be suitable to control other
logic devices associated with the counter. The Mod-5 counter circuit Fig. 7.27 incorporates an
RS flip-flop, which produces a reset pulse, the width of which is equal to the duration for
which the clock pulse is low. The way it works is like this. State 5 is decoded by gate D, its
output goes low, the RS flip-flop is set, and output 	 goes low, which resets all the flip-flops.

The leading edge of the next clock pulse resets the RS flip-flop, 	 goes high which removes
the reset pulse. The counter thus remains reset for the duration of the low time of the clock
pulse. When the trailing edge of the same clock pulse arrives, a new cycle is started. The
waveform for Mod-5 counter is given in Fig. 7.28.

SHIFT REGISTERS AND COUNTERS 281

Fig. 7.27 Modulus-5 counter

1

0

1

0

1

0

1

0

1

0

1 2 3 4 5 6 7

0 1 0 1 0 0 1 0

0 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 1 2 3 4 0 1 2
Counter
State

Reset
Pulse

QC

QB

QA

Clock
Pulse

Counter in Reset
State EOR this period

Fig. 7.28 Waveform for modulus-5 asynchronous counter

Mod-10 (Decade) Counter
The decade counter discussed here is also an asynchronous counter and has been imple-

mented using the counter reset method. As the decade counter has ten states, it will require
four flip-flops to implement it. A state diagram for this counter is given in Fig. 7.29 and the
truth table is given in Table 7.6.

282 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

0 1 2

3

4

5

6
789

Last desired
state

Counter guided
to state 0 by
external logic

Fig. 7.29 State diagram for decade counter

Table 7.6 Truth table for decade counter

QA QB QC QD State

LSB

0 0 0 0 0

1 0 0 0 1

0 1 0 0 2

1 1 0 0 3

0 0 1 0 4

1 0 1 0 5

0 1 1 0 6

1 1 1 0 7

0 0 0 1 8

1 0 0 1 9

0 1 0 1 10

1 1 0 1 11 X

0 0 1 1 12 X

1 0 1 1 13 X

0 1 1 1 14 X

1 1 1 1 15 X

The table shows that state 9 will be the last desired state and state 10 will be the reset
state. State 11, 12, 13, 14 and 15 will be the don’t care states. The next step is to plot the
states on a map to determine the reset pulse. This has been done in Fig. 7.30.

The map shows that the reset pulse is determined by the following expression:

R = 	 	 	 	 � � �� � �

SHIFT REGISTERS AND COUNTERS 283

Fig. 7.30

The decade counter circuit Fig. 7.31 is essentially a binary ripple counter, which can
count from 0000 to 1111; but since a decade counter is required to count only from 0000 to
1001, a reset pulse is applied at count 10 when the counter output is 	 	 	 	 � � �� � � � In order
to have control over the reset pulse width, a 4-input NAND gate is used to decode state 10.

Fig. 7.31 Decade (mod-10) asynchronous counter using count reset and pulse width control

284 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

To decode count 10, logic inputs that are all one at the count of 10, are used to feed the NAND
gate. At this count the NAND gate output goes low providing a 1 → 0 change which triggers
the one-shot unit. The 	 output of the one shot unit is used, as it is normally high and it
goes low during the one-shot timing period, which depends on the RC constants of the circuit.
The timing period of the one-shot can be a adjusted, so that the slowest counter state resets.
Although only A and D flip-flops need to be reset, the reset pulse is applied to all the flip-flop
to make doubly sure that all flip-flops are reset.

1 0

1
2

3
4

5
6

7
8

9

Q
C

Q
B

Q
A

C
lo

ck
P

ul
se

10

0
1

0
1

0
1

0
1

0
1

0

0
0

1
1

0
0

1
1

0
0

0

0
0

0
0

1
1

1
1

0
0

0

0
0

0
0

0
0

0
0

1
1

0

1 0 1 0 1 0

Q
D

1 0 1 0
0

1
2

3
4

5
6

7
8

9
0

C
ou

nt
er

St
at

e

R
es

et
Pu

ls
e

F
ig

.
7.

32
 W

av
ef

or
m

 f
or

 d
ec

ad
e

co
u

n
te

r

SHIFT REGISTERS AND COUNTERS 285

Since decade (Modulus-10) counters have 10 discrete starts, they can be used to divide
the input frequency by 10. You will notice that at the output of the D-flip-flop, there is only
one output pulse for every 10 input pulses. These counters can be cascaded to increase count
capability.

The waveform for this counter is shown in Fig. 7.32.

7.4.10 Logic Gating Method
The counter reset method of implementing counters, which we have discussed in the

previous section, has some inherent drawbacks. In the first place, the counter has to move
up to a temporary state before going into the reset state. Secondly, pulse duration timing is
an important consideration in such counters, for which purpose special circuits have to be
incorporated in counter design.

We will now consider another approach to counter design, which provides for the exact
count sequence. We will discuss the design of some modulus counters to illustrate the pro-
cedures.

Mod-3 Counter (Synchronous)
Let us suppose that we are required to design a modulo-3 counter which conforms to the

truth table given in Table 7.7.

Table 7.7 Truth table for Mod-3 Counter

Input pulse count Counter states

A B

0 0 0

1 1 0

2 0 1

3 0 0

Based on this truth table, the output waveform for this Mod-3 counter should be as
shown in Fig. 7.33.

1 2 3 4

0 1 0 0 1

0 0 1 0 0

1

0

1

0

1

0

Clock

A

B

Fig. 7.33 Waveform for mod-3 counter

You will notice from the waveform of the counter, that flip-flop A toggles on the trailing
edge of the first and second pulses. Also observe that flip-flop B toggles only on the second

286 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

and third clock pulses. We have to bear this in mind, in figuring out logic levels for the J and
K inputs of the flip-flops.

Suppose that initially both the flip-flops are reset. Since flip-flop A has to toggle when the
trailing edges of the first and the second clock pulses arrive, its J and K inputs should be at
logic 1 level during this period. This is achieved by connecting the K input to logic 1 level

and the J input to the complement output of flip-flop B, as during this period the � output
of flip-flop B is at a high logic level. In this situation, the first clock pulse produces a logic
1 output and the second clock pulse produces a logic 0 output.

The J input of flip-flop B is connected to the normal output of flip-flop A. Therefore, when
the first clock pulse arrives, the J input of flip-flip B is low. Its output will remain low as you
will notice from the truth table and the waveform. The second pulse is required to toggle this
flip-flop and its K input is, therefore held high. When the second clock pulse arrives, the flip-
flop will toggle as both the J and K inputs are high. The output will go high. At the same
time its complement output will be low, which makes the J input of flip-flop A low.

When the third clock pulse arrives, the output of flip-flop A will go low. Since after the
second clock pulse the output of flip-flop A was already low, the third clock pulse produces a
low output at flip-flop B. Both the A and B flip-flops are now reset and the cycle will be
repeated.

A logic diagram for the Mod-3 counter is given in Fig. 7.34.

A

A

KA

JA

CLK

B

B

KB

JB

CLK

1

Clock

A B

1

Fig. 7.34 Mod-3 counter (synchronous)

Mod-5 Counter (Asynchronous)
We will use the same procedure to design a mod-5 counter as before. The truth table

required for this counter is given in Table 7.8.

Table 7.8 Truth table for Mod-5 counter

Input pulse Counter states

count A B C

0 0 0 0

1 1 0 0

2 0 1 0

3 1 1 0

4 0 0 1

5 0 0 0

SHIFT REGISTERS AND COUNTERS 287

The waveform for this counter based on this truth table is given in Fig. 7.35. You will
notice from the truth table and the waveform that the A flip-flop complements each input
pulse, except when the normal output of flip-flop C is logic 1, which is so after the trailing
edge of the 4th, clock pulse. It, therefore, follows that the K input of flip-flop A should be a
constant logic 1 and the J input should be connected to the complement output of flip-flop will
be 0 when C is 1 so that the output of flip-flop A remains low after the trailing edge of the
5th clock pulse.

If you observe the changing pattern of the output of the B flip-flop, you will notice that
it toggles at each transition of the A output from 1 → 0. It is, therefore, obvious that the A
output should be connected to the clock input of the B-flip-flop and the J and K inputs of this
flip-flop should be at logic 1 level.

1 2 3 4 5

0 1 0 1 0 0

0 0 1 1 0 0

1

0

1

0

1

0

Clock

A

B

0 0 0 0 1 0
1

0
C

Fig. 7.35 Waveform for mod-5 counter

After the 3rd clock pulse, the outputs of A and B flip-flops are 1. An AND gate is used
to make the J input to flip-flop C as 1 when both A and B are 1. The K input to flip-flop C
is also held at logic 1 to enable it to toggle. The clock is also connected to the clock input
to flip-flop C, which toggles it on the 4th, clock pulse and its output becomes 1. When the
5th, clock pulse arrives, the J input to flip-flop C is 0 and it resets on the trailing edge of this
clock pulse. Thereafter the cycles are repeated. The logic diagram for the mod-5 counter is
given in Fig. 7.36.

Fig. 7.36 Logic diagram for mod-5 counter

288 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Mod-10 (Decade) Counter (Asynchronous)
The truth table for a Decade counter is given in Table 7.9.

Table 7.9 Truth Table for Decade counter

Input pulse Counter states

count A B C D

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 (0) 0 0 0 0

The waveform for this counter based on this truth table is given in Fig. 7.37.

1

0
1 2 3 4 5 6 7 8 9

C

B

A

Clock 10

0 1 0 1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1 0 0 0

0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0D

1

0

1

0

1

0

1

0

Fig. 7.37 Waveform for decade counter

If you compare truth Table 7.9 for the Decade counter with Table 7.2 which gives the
count-up sequence for a 4-bit binary up-counter, you will notice a close similarity between the
two, up to input pulse 8. You will also notice a close resemblance between waveforms of
Fig. 7.37 and Fig. 7.15 up to a certain point.

The count ripples through the A, B and C flip-flops for the first seven input pulses, as
in the standard 4-bit binary up-counter. At this point the counter will show an output of 1 1
1 0 (decimal 7). On the application of the 8th pulse, flip-flops A, B and C must reset and the
D output should be 1, that is the counter state should change from 1 1 1 0 to 0 0 0 1. In order
that the J input to flip-flop D is 1, so that when K is 1 the D flip-flop output goes from 0 to

SHIFT REGISTERS AND COUNTERS 289

1; B and C outputs are applied to the input of an AND gate and its output goes to the J input.
In order that the B and C outputs are 0, when D output is 1 for the 8th and the 9th count,
the complement output of the D flip-flop which will be 0 when D is 1, is connected to the J
input of the B flip-flop.

After the trailing edge of the 8th pulse D becomes 1 and A, B and C become 0, the 9th
pulse is required to change the output from 0 0 0 1 to 1 0 0 1. Since no change is required
in the D output, the D-flip-flop is triggered by the A output. When the 9th pulse arrives, the
A output changes from 0 to 1, but this causes no change in the D output. When the 10th input
pulse arrives, it changes the A output from 1 to 0, which changes the D output from 1 to 0.
The counter output changes from 1 0 0 1 to 0 0 0 0. During the 9th and the 10th pulses, the
B and C outputs will remain unchanged.

A logic diagram for the Decade counter is given in Fig. 7.38.

Fig. 7.38 Logic diagram for decade counter

7.4.11 Design of Synchronous Counters
In most of the counter designs we have considered so far, the flip-flops are not triggered

simultaneously. In synchronous counters all stages are triggered at the same time. The output
of each stage depends on the gating inputs of the stage. If you refer to previous counter designs,
you will observe that the gating inputs have been assigned values to give the desired outputs.

The basic framework of a synchronous counter would be somewhat like the partial logic
diagram given in Fig. 7.39. You will notice that all the clock inputs are connected to a common
line and the J and K inputs of the flip-flops have been left open. They are required to have the
values necessary to give the required outputs after each input pulse. The J and K inputs of each
flip-flop are therefore required to have the values which produce the desired counter states at
each input pulse. The entire purpose of the exercise is to determine the input values for each
stage. A typical design procedure can be summed up in the following steps.

QAKA

JA

CLK A

A

QA

QBKB

JB

CLK B

B

QB

Clock
Fig. 7.39

290 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(a) Write the desired truth table for the counter.
(b) Write the counter transition table which should list the starting state and the

subsequent states the counter is required to take up.
(c) With the help of the excitation table and using the counter transition table, write

down the input values for the J and K inputs to enable each flip-flop to attain the
output state as required by the transition table.

(d) Prepare Karnaugh maps for the J and K inputs of each stage.
(e) Derive Boolean algebra expressions for each of the inputs to the flip-flops.
(f) Draw the synchronous counter circuit incorporating the J and K input values

obtained from the above steps.
We will take up a specific case to illustrate the above procedure.

Mod-3 Synchronous Counter
We have implemented a Mod-3 synchronous counter as described in Sec. 7.4.10.1. We will

implement the same counter by the procedure described here. We will follow the truth table
given in Table 7.7. For your convenience the excitation table for JK flip-flops is reproduced here.

Table 7.10 Excitation table for JK flip-flop

Present state Next state J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

We now prepare a counter design table listing the two flip-flops and their states and also
the four inputs to the two flip-flops as in table 7.11.

Table 7.11 Counter design table

Counter state Flip-flop inputs

A B A B

JA KA JB KB

0 0 1 X 0 X
1 0 X 1 1 X
0 1 0 X X 1
0 0

The table shows that if the counter is in the state A = 0, B = 0 and a clock pulse is
applied, the counter is required to step up to A = 1, B = 0. When the counter is in the state
A = 1, B = 0 and a clock pulse is applied, the counter has to step up to A = 0, B = 1. Lastly
when another clock pulse is applied the counter has to reset.

From the excitation table for JK flip-flops we can determine the states of the J and K
inputs, so that the counter steps up as required. For instance for the A flip-flop to step up
from 0 to 1, JA should be 1 and KA should be X. Similarly, the J and K input values of both
the flip-flops for the remaining counter states have been worked out as shown in the table.

The next step is to derive boolean algebra expressions for each of the inputs to the flip-
flops. In the above exercise, our effort was to generate flip-flop inputs in a given row, so that

SHIFT REGISTERS AND COUNTERS 291

when the counter is in the state in that row, the inputs will take on the listed values, so that
the next clock pulse will cause the counter to step up to the counter state in the row below.

We now form boolean algebra expressions from this table for the JA, KA, JB and KB
inputs to the flip-flops and simplify these expressions using Karnaugh maps. Expressions for
these inputs have been entered in Karanaugh maps in Fig. 7.40 (a), (b), (c) and (d). The
simplified expressions obtained for the inputs are also indicated under the maps.

The counter circuit when drawn up with the following resultant data will be the same
as worked out before in Fig. 7.34.

JA = �

KA = 1
JB = A
KB = 1

1

0

0

2

A 0

X

1

X

3

A 1

0 1

X

0

X

2

A 0

1

1

X

3

A 1

0 1

()
Map for J

J = B

a
A

A

()
Map for K

K = 1

b
A

A

X

0

X

2

A 0

1

1

X

3

A 1

0 1

X

0

1

2

A 0

X

1

X

3

A 1

0 1

()
Map for J

J = A

c
B

B

()
Map for K

K = 1

d
B

B

B B B B

Fig. 7.40 (a), (b), (c) and (d)

Mod-5 Counter (Synchronous)
The Mod-5 counter we are going to implement will be a synchronous counter, but it will have

the same counter states as given earlier in Table 7.8. The counter design table for this counter
lists the three flip-flops and their states as also the six inputs for the three flip-flops. The flip-flop
inputs required to step up the counter from the present to the next state have been worked out
with the help of the excitation table (Table 7.10). This listing has been shown in Table 7.12.

292 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

1

0

A 0

A 1

BC
00

() Map for J
J = C

a A
A

0

4

X

6

1

2

X

1

X

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() Map for K
K = 1

b A
A

X

4

X

6

X

2

1

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() Map for J
J = A

c B
B

0

4

X

6

X

2

1

1

X

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() Map for K
K = A

d B
B

X

4

X

6

0

2

X

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() Map for J
J = AB

e C
C

X

4

X

6

0

2

0

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() Map for K
K = 1

f C
C

1

4

X

6

X

2

X

1

X

5

X

7

X

3

BC
01

BC
11

BC
10

Fig. 7.41

A

A

KA

JA

C

C

KC

JC

1

Clock

A
B

B

B

KB

JB

C

CLK CLK CLK

1

Fig. 7.42 Synchronous mod-5 counter

SHIFT REGISTERS AND COUNTERS 293

Table 7.12 Counter design table for Mod-5 counter

Input pulse Counter states Flip-flop inputs

count A B C JA KA JB KB JC KC

0 0 0 0 1 X 0 X 0 X

1 1 0 0 X 1 1 X 0 X

2 0 1 0 1 X X 0 0 X

3 1 1 0 X 1 X 1 1 X

4 0 0 1 0 X 0 X X 1

5 (0) 0 0 0

The flip-flop inputs have been determined with the help of the excitation table. Table
7.10. Some examples follow:

A flip-flop
The initial state is 0. It changes to 1 after the clock pulse. Therefore JA should be 1 and

KA may be 0 or 1 (that is X).

B flip-flop
The initial state is 0 and it remains unchanged after the clock pulse. Therefore JB should

be 0 and KB may be 0 or 1 (that is X).

C flip-flop
The state remains unchanged. Therefore JC should be 0 to KB should by X.
The flip-flop input values are entered in Karnaugh maps Fig. 7.41 [(a), (b), (c), (d), (e) and

(f)] and a boolean expression is formed for the inputs to the three flip-flops and then each
expression is simplified. As all the counter states have not been utilized, Xs (don’t) are entered
to denote un-utilized states. The simplified expressions for each input have been shown under
each map. Finally, these minimal expressions for the flip-flop inputs are used to draw a logic
diagram for the counter, which is given in Fig. 7.42.

Mod-6 Counter (Synchronous)
The desired counter states and the JK inputs required for counter flip-flops are given in

the counter design table (Table 7.13).

Table 7.13 Counter design table for Mod-6 counter

Input pulse Counter states Flip-flop inputs

count A B C JA KA JB KB JC KC

0 0 0 0 1 X 0 X 0 X
1 1 0 0 X 1 1 X 0 X
2 0 1 0 1 X X 0 0 X
3 1 1 0 X 1 X 1 1 X
4 0 0 1 1 X 0 X X 0
5 1 0 1 X 1 0 X X 1

6 (0) 0 0 0

294 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

As before, the JK inputs required for this have been determined with the help of the
excitation table, (Table 7.10). These input values have been entered in Karnaugh maps
Fig. 7.43 and a boolean expression is formed for the inputs to the three flip-flops and then
each expression is simplified. Xs have been entered in those counter states which have
not been utilized. The simplified expressions for each input have been shown under each
map and finally a logic diagram based on these expressions has been drawn, as given in
Fig. 7.44.

1

0

A 0

A 1

BC
00

() Map for J
J = 1

a A
A

1

4

X

6

1

2

X

1

X

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() Map for K
K = 1

b A
A

X

4

X

6

X

2

1

1

1

5

X

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() Map for J
J = AC

c B
B

0

4

X

6

X

2

1

1

0

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() Map for K
K = A

d B
B

X

4

X

6

0

2

X

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() Map for J
J = AB

e C
C

X

4

X

6

0

2

0

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() Map for K
K = A

f C
C

0

4

X

6

X

2

X

1

1

5

X

7

X

3

BC
01

BC
11

BC
10

Fig. 7.43

SHIFT REGISTERS AND COUNTERS 295

Fig. 7.44 Synchromous mod-6 counter

7.4.12 Lockout
The mod-6 counter we have just discussed utilizes only six out the total number of

eight states available in a counter having three flip-flops. The state diagram for the mod-
6 counter given in Fig. 7.45, shows the states which have been utilized and also states 011
and 111 which have not been utilized. The counter may enter one of the unused states
and may keep shuttling between the unused states and not come out of this situation.
This condition may develop because of external noise, which may affect states of the flip-
flops. If a counter has unused states with this characteristic, it is said to suffer from
lockout.

111
000

100

010

110
001

101

011

Unused
States

Fig. 7.45 State diagram for mod-6 counter

The lockout situation can be avoided by so arranging the circuit that whenever the
counter happens to be in an unused state, it reverts to one of the used states. We will
redesign the mod-6 counter so that whenever it is in state 0 1 1 or 1 1 1, the counter
swithces back to the starting point 0 0 0. You will notice from Fig. 7.43 that Js and Ks were
marked X in squares corresponding to the unused states. We will now assign values for Js
and Ks for the unused states, so that the counter reverts to state 0 0 0. This has been done
in Table 7.14.

296 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Table 7.14

 Counter states Flip-flop inputs

A B C JA KA JB KB JC KC
0 1 1 0 X X 1 X 1
1 1 1 X 1 X 1 X 1
0 0 0

These values of Js and Ks have been entered in K-maps for those counter states where
Xs had been entered previously. K-maps for the revised values of Js and Ks are given in Fig.
7.46. Boolean expressions are formed for the inputs to the three flip-flops and the expressions
so obtained are simplified. The expressions for each input have been shown under each map
and the logic diagram for the improved mod-6 counter is given in Fig. 7.47.

1

0

A 0

A 1

BC
00

() Map for J
 J = B + BC
a A

A

1

4

0

6

1

2

X

1

X

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() Map for K
K = 1

b A
A

X

4

X

6

X

2

1

1

1

5

1

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() Map for J
J = AC

c B
B

0

4

X

6

X

2

1

1

0

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() Map for K
 K = A +C = AC

d B
B

X

4

1

6

0

2

X

1

X

5

1

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() Map for J
J = AB

e C
C

X

4

X

6

0

2

0

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() Map for K
 K = A + B = AB

f C
C

0

4

1

6

X

2

X

1

1

5

1

7

X

3

BC
01

BC
11

BC
10

Fig. 7.46

SHIFT REGISTERS AND COUNTERS 297

Fig. 7.47 Mod-6 counter which will reset when it happens to reach an unutilized state

7.4.13 Ring Counter
Ring counters provide a sequence of equally spaced timing pulses and, therefore, find

considerable application in logic circuits which require such pulses for setting in motion a
series of operations in a predetermined sequence at precise time intervals. Ring counters are
a variation of shift registers.

The ring counter is the simplest form of shift register counter. In such a counter the flip-
flops are coupled as in a shift register and the last flip-flop is coupled back to the first, which
gives the array of flip-flops the shape of a ring as shown in Fig. 7.48. In particular two
features of this circuit should be noted.

(1) The QD and 	�
 outputs of the D flip-flop are connected respectively, to the J and

K inputs of flip-flop A.

(2) The preset input of flip-flop A is connected to the reset inputs of flip-flops B, C and D.

Fig. 7.48 Ring counter

298 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

If we place only one of the flip-flops in the set state and the others in the reset state
and then apply clock pulses, the logic 1 will advance by one flip-flop around the ring for each
clock pulse and the logic 1 will return to the original flip-flop after exactly four clock pulses,
as there are only four flip-flops in the ring. The ring counter does not require any decoder,
as we can determine the pulse count by noting the position of the flip-flop, which is set. The
total cycle length of the ring is equal to the number of flip-flop stages in the counter. The
ring counter has the advantage that it is extremely fast and requires no gates for decoding
the count. However it is uneconomical in the number of flip-flops. Whereas a mod-8 counter
will require four flip-flops, a mod-8 ring counter will require eight flip-flops.

The ring counter is ideally suited for applications where each count has to be recognized
to perform some logical operation.

We can now consider how the modified shift register shown in Fig. 4.78 operates. When
the preset is taken low momentarily, flip-flop A sets and all other flip-flops are reset. The
counter output will now be as follows:

QA QB QC QD

1 0 0 0

At the negative clock edge of the 1st pulse, flip-flop A resets QA becomes 0, QB becomes
1 and QC and QD remain 0. The counter output is now as follows:

QA QB QC QD

1 0 0 0

After the 4th clock pulse, the counter output will be as follows:

QA QB QC QD

1 0 0 0

You will notice that this was the position at the beginning of the operation, when the
preset input was activated. A single logic 1 has travelled round the counter shifting one flip-
flop position at a time and has returned to flip-flop A. The states of the flip-flops have been
summarized in Table 7.15.

Table 7.15 Ring counter states

States Counter output

QA QB QC QD

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 1 0 0 0

The relevant waveforms are shown in Fig. 7.49.

If preset and clear inputs are not available, it is necessary to provide the required gating,
so that the counter starts from the initial state. This can be simply arranged by using a NOR
gate as shown in Fig. 7.50.

SHIFT REGISTERS AND COUNTERS 299

1 2 3 4 5

1 0 0 0 1

0 1 0 0 0

State

QA

QB

0 0 1 0 0
QC

0 1 2 3 0

0 0 0 1 0
QD

Shift
Pulses

Fig. 7.49

The NOR gate ensures that the input to flip-flop A will be 0 if any of the outputs of A,
B, C flip-flops is a logic 1. Now, on the application of clock pulses 0s will be moved right into
the counter until all A, B and C flip-flops are reset. When this happens, a logic 1 will be shifted
into the counter, and as this 1 is shifted right through the A, B and C flip-flops it will be
preceded by three more 0s, which will again be followed by a logic 1 from the NOR gate when
flip-flops, A, B and C are all reset.

Fig. 7.50 Ring counter with correcting circuit

7.4.14 Johnson Counter
The ring counter can be modified to effect an economy in the number of flip-flops used

to implement a ring counter. In modified form it is known as a switchtail ring counter or
Johnson counter. The modified ring counter can be implemented with only half the number
of flip-flops.

In the ring counter circuit shown in Fig. 7.48, the QD and 	� outputs of the D-flip-flop
were connected respectively, to the J and K inputs of flip-flop A. In the Johnson counter, the

300 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

outputs of the last flip-flop are crossed over and then connected to the J and K inputs of the
first flip-flop. Fig. 7.51 shows a Johnson counter using four JK flip-flops in the shift register
configuration, shown QD and 	�

 outputs connected respectively, to the K and J inputs of flip-
flop A. Because of this cross-connection, the Johnson counter is sometimes referred to as a
twisted ring counter.

Fig. 7.51 Four-stage Johnson counter

To enable the counter to function according to the desired sequence, it is necessary to
reset all the flip-flops. Initially therefore, QD is 0 and QA is 1, which makes the J input of
flip-flop A logic 1. We will now study how shift pulses alter the counter output.

(1) Since the J input of flip-flop A is 1, the 1st shift pulse sets the A flip-flop and the
other flip-flops remain reset as the J inputs of these flip-flops are 0 and K inputs
are 1.

(2) When the 2nd shift pulse is applied, since QD is still 1, flip-flop A remains set and
flip-flop B is set, while flip-flop C and D remain reset.

(3) During the 3rd shift pulse, flip-flop C also sets, while flip-flops A and B are already
set; but flip-flop D remains reset.

(4) During the 4th, pulse, flip-flop D also sets while flip-flops A, B and C are already set.

(5) During the 5th pulse as 	� is 0, flip-flop A resets, while flip-flops B, C and D remain
set.

The entire sequence of states, which are 8 in all, is as shown in Table 7.16.

You will notice from Table 7.16 that Johnson counter with four flip-flops has eight valid
states. Since four flip-flops have been used, the total number of states is 16, out of which 8
are invalid, which have been listed in Table 7.17.

The valid states require decoding, which is different from normal decoding used for
standard pure binary count sequence. You will notice that state 1 is uniquely defined, when
the outputs of flip-flops A and D are low. Thus a 2-input AND gate with inputs as shown in
the table can decode state 1. State 2 is also fully defined by A high and B low. Similarly, the
other outputs can be decoded by the gates with inputs as shown in Table 7.16.

SHIFT REGISTERS AND COUNTERS 301

Table 7.16

State QD QC QB QA Binary Output decoding

equivalent

1 0 0 0 0 0 ADA
D

2 0 0 0 1 1 ABA
B

3 0 0 1 1 3 BCB
C

4 0 1 1 1 7 CDC
D

5 1 1 1 1 15 ADA
D

6 1 1 1 0 14 ABA
B

7 1 1 0 0 12 BCB
C

8 1 0 0 0 8 CDC
D

Table 7.17 Invalid states

QD QC QB QA Binary
equivalent

0 1 0 0 4

1 0 0 1 9

0 0 1 0 2

0 1 0 1 5

1 0 1 1 11

0 1 1 0 6

1 1 0 1 13

1 0 1 0 10

In order to ensure that the counter counts in the prescribed sequence given in
Table 7.16, an initial reset pulse may be applied, which will reset all the flip-flops. If this is
not done, there is no surety that the counter will revert to the valid counting sequence. If
the counter should find itself in an unused state, it may continue to advance from one
disallowed state to another. The solution to the problem lies in applying extra feedback, so
that the counter reverts to the correct counting sequence. For this purpose, the self-correct-
ing circuit given in Fig. 7.53 may be used. The input to the AND gate is QA 	�

 	�
 QD and

thus it decodes the word 1 0 0 1, which overrides the input, which is 0 and the counter
produces an output of 1 1 0 0, which is a part of the allowed counting sequence. From then
onwards the counter functions in the desired sequence.

302 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

1 2 3 4 5 6 7 8 1 2 3 4
1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 1 1 0 0 0 0 1 1 1

0 0 1 1 1 1 0 0 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0

State
Shift
Pulse

QA

QB

QC

QD

Fig. 7.52 Waveforms for a 4-stage Johnson counter

Fig. 7.53 Self-starting and self-correcting Johnson counter

Five-stage Johnson Counter
While discussing the 4-stage Johnson counter, you must have observed that this counter

divides the clock frequency by 8. Therefore, a Johnson counter with n flip-flops will divide the
clock frequency by 2n or, in other words, there will be 2n discrete states. If we have five flip-
flops connected as a Johnson counter, we will have 10 discrete states. Consequently, we will
have a decade counter. However, it should be noted that this counter will have in all 32 states,
out of which the desired count sequence will utilize only 10 states and the remaining 22 will
have to be disallowed. As in the case of a four flip-flop Johnson counter, some form of feedback
will have to be incorporated, to disallow the illegal states. A self-correcting circuit like the one
shown in Fig. 7.53 may be used with this counter Table 7.18 shows the sequence of the ten
allowed states for this counter. The waveforms are shown in Fig. 7.54.

SHIFT REGISTERS AND COUNTERS 303

Table 7.18

State E D C B A Output

decoding

1 0 0 0 0 0 �

2 0 0 0 0 1 �

3 0 0 0 1 1 ��

4 0 0 1 1 1 ��

5 0 1 1 1 1 ��

6 1 1 1 1 1 A E

7 1 1 1 1 0 �

8 1 1 1 0 0 ��

9 1 1 0 0 0 ��

10 1 0 0 0 0 ��

For decoding the output of the 5-stage Johnson counter use 2-input AND gates. The
inputs to these gates have been indicated in Table 7.18.

Fig. 7.54 Waveform for a 5-stage Johnson counter

7.4.15 Ring Counter Applications
Ring counters find many applications as

(1) Frequency dividers
(2) Counters
(3) Code generators and
(4) Period and sequence generators

304 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Frequency dividers
If you look at the waveform Fig. 7.49 of the 4-stage ring counter shown in Fig. 7.48, you

will notice that the B flip-flop produces one output pulse for two input pulses, that is it divides
the frequency of the shift pulse by 2. Similarly, flip-flop C produces one output pulse for every
three input pulses, that is it divides the input frequency by 3, and flip-flop D divides the input
frequency by 4. If there are n flip-flops they will divide the shift pulse by n. Thus, a shift
register connected as a ring counter can be used as a frequency divider.

Counters
A shift register, when connected as a ring counter, can also be used as a counter. For

instance, the flip-flop outputs of the ring counter in Fig. 7.48 also give an indication of the
number of pulses applied and, therefore counting requires no decoding.

Sequence generators
Sequence generators are circuits which generate a prescribed sequence of bits in syn-

chronism with a clock. By connecting the outputs of flip-flops in a ring counter to the logic
circuits whose operations are to be controlled according to a certain sequence, a ring counter
can perform a very useful function. Since ring counters are activated by fixed frequency
clocks, the timing intervals between the logic circuits to be controlled can be very precise.

This is of particular importance in computers where instructions have to be executed at
the right time and in the correct sequence.

Feedback Counters
The ring counters which we have considered so far have a cycle length which is the same

as the number of flip-flops in the counter. For instance, the ring counter in Fig. 7.48 has a
cycle length of 4. It is possible to design a ring counter which produces a longer cycle length
of 2n–1, where n is the number of flip-flops in the ring counter. The trick lies in decoding the
outputs of the shift register and feeding the decoded output back to the input. This technique
can be used to develop a wide variety of count sequences and output waveforms. To achieve
a cycle length of 2n – 1, an exclusive-OR gate may be used as the feedback element, which
provides a feedback term from an even number of stages to the first stage. Table 7.19
intended for counters up to 12 stages, shows the stages the outputs of which are to be fed
back to the first flip-flop in the chain.

Q

Q

K

J

FF1

Q1 Q2 Q4

CLK

Q3
Preset

Q

Q

K

J

FF2

Q

Q

K

J

FF3

Q

Q

K

J

FF4

PRE PRE PRE PRE

Fig. 7.55 Four-stage feedback counter

SHIFT REGISTERS AND COUNTERS 305

This table can be used for designing counters of the type shown in Fig. 7.55, when the
feedback element consists of a single XOR gate. The count sequence for this 4-stage counter
is given in Table 7.20. When you refer to Table 7.19, you will notice that the feedback term
for a 4-stage counter using an XOR gate as the feedback element is F = (Q3 ⊕ Q4). The truth
table for an XOR gate reproduced below will enable you to determine the input to the first
stage in the counter.

 Input Output

A B F

0 0 0

0 1 1

1 0 1

1 1 0

Table 7.19 Feedback terms for counter design

No. of stage Feedback stage

2 Q1 Q2

3 Q2 Q3

4 Q3 Q4

5 Q3 Q5

6 Q5 Q6

7 Q6 Q7

8 Q4 Q5 Q6 Q8

9 Q5 Q9

10 Q7 Q10

11 Q9 Q11

12 Q6 Q8 Q11 Q12

In determining the counter states, all that is necessary is to determine the feedback
input to the first flip-flop and, since JK flip-flops have been used, the input to the first flip-
flop will be the same as the output of the XOR gate, which depends on the outputs of FF3
and FF4. Table 7.20 has been prepared on this basis.

It is important to note that the 0 state of count sequence has to be excluded by additional
gating or by using the preset input. If you refer to the first row of the table, you will observe
that both outputs Q3 to Q4 are 1 and therefore F = 0. Consequently, the input to the first
flip-flop is also 0, which will make its output on the first clock pulse 0. The outputs of FF2
and FF3 will remain unchanged on the first clock pulse. You can determine the outputs in
the remaining rows on this basis.

A close look at the table will show you that the output of FF2 resembles the output of
FF1, but it is delayed by one clock pulse from that of FF1. Similarly, the outputs of FF3 and
FF4 are also delayed by one clock pulse as compared to the outputs of the immediately
preceding flip-flops.

306 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Table 7.20 Count sequence for 4-stage feedback counter

Clock input Output

Q1 Q2 Q3 Q4

0 1 1 1 1

1 0 1 1 1

2 0 0 1 1

3 0 0 0 1

4 1 0 0 0

5 0 1 0 0

6 0 0 1 0

7 1 0 0 1

8 1 1 0 0

9 0 1 1 0

10 1 0 1 1

11 0 1 0 1

12 1 0 1 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

This procedure can be used for designing counters which are required to cycle through
a large number of states. For instance a counter which uses 8 flip-flops will cycle through
28 – 1 or 255 states. We have used only a single XOR gate as the feedback element, but the
feedback logic can be designed differently to sequence through any desired sequence or
waveform.

Sequence generators
Here we are concerned with pseudo-random sequence generators. They will be random

in the sense that the output generated will not cycle through the normal binary count. The
sequence is termed pseudo, as it is not random in the real sense, because it will sequence
through all the possible states once every 2n – 1 clock cycles. The random sequence generator
given in Fig. 7.56 has n stages and it will therefore sequence through 2n – 1 values before
it repeats the same sequence of values.

Let us consider the sequence 100110011001. The bit sequence in this number has a
length of 4 that is 1001, if you read it from the first bit on the left. You can also read the
sequence from the 2nd and 3rd bits on the left, when the bit patterns will appear to be 0011
and 0110. No matter how you read it, the bit length does not change, nor does the sequence
of bits change. You can describe the pattern of bits as 1001, 0011 or 0110.

We can now consider the structure of a sequence generator given in a simple form in
Fig. 7.56 using D-type flip-flops connected as in a shift register. The output of the flip-flops
are connected through a feedback decoder to the input of the first flip-flop. The output of the
decoder is a function of the flip-flop outputs connected to it and the decoder circuitry. We can
state this as follows :

F = f (Q1, Q2, Q3, Qn)

SHIFT REGISTERS AND COUNTERS 307

Fig. 7.56 Basic structure of a sequence generator

The desired sequence of bits will appear at the output of each of the flip-flops, but the
output of each of the successive flip-flops will show a delay in the appearance of the sequence
by one clock interval over the one which precedes it.

The minimum number of flip-flops required to generate a sequence of length S is given
by

S = 2n – 1

Where, n is the number of flip-flops in the chain.

However, if the minimum number of flip-flops is used, it is not possible to say off hand,
that it will be possible to generate a sequence of the required length; but for a given number
of flip-flops there is invariably one sequence which has the maximum length.

It is important that in the generation of a sequence no state should be repeated, as that
will put a limit on the number of states, because every state determines the development of
the future sequence. Besides, the all 0 state has to be excluded, as in this case the input to
the first flip-flop in the chain will be 0, which implies that the next state will also be 0, in
which case the sequence generator would stop functioning.

We will now consider the steps in the generation of the sequence 1001001 of seven bits.
The number of stages that will be required to generate this sequence can be determined as
follows:

S = 2n – 1

Since, S = 7; n should be 3, that is three flip-flops will be required.

However, there is no guarantee that a 7-bit sequence can be generated in 3 stages. If
it is not possible, we can try to implement the sequence by using a 4-stage counter; but in
this particular case, as you will see, it will be possible to generate this sequence with three
stages. The basic arrangement for generating this sequence is shown in Fig. 7.80, which uses
three JK flip-flops. The outputs of FF2 and FF3 constitute the inputs to the logic decoder,
which in this case in an XOR gate. The output of the XOR gate, which constitutes the input
F to FFI can be stated as follows:

F = (Q2 ⊕ Q3)

You must have noticed that the outputs of FF2 to FF3 are one CLK pulse behind the
outputs of flip-flops immediately preceding them. After the first sequence of 7 states has been
completed, the sequence is repeated when the 8th (or 1st) CLK pulse arrives. Also observe

308 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

that no output state has been repeated, which shows that it has been possible to implement
the sequence with only 3 flip-flops.

K

J

FF1

Q1 Q2

Clock

Q3
Present

K

J

FF2

K

J

FF3

PRE PRE PRE

F = (Q + Q)2 3

Fig. 7.57 Three-stage sequence generator

When a larger or smaller number of flip-flops is used, the input to the first flip-flop can
be worked out on the same basis; but the feedback logic will be different as shown in
Table 7.21 for sequence generators using up to 8 stages. For instance for a generator using
four flip-flops, F will be as follows:

F = (Q3 ⊕ Q4)

Table 7.21 Logic design table for shift register
sequences of maximum length (S = 2n –1)

Clock Feedback state

n

2 Q1 Q2

3 Q2 Q3

4 Q3 Q4

5 Q3 Q5

6 Q5 Q6

7 Q6 Q7

8 Q2 Q3 Q4 Q8

The implementation of sequence 1001011 has been presented in Table 7.22.

The count sequence has been developed as follows: You will notice from the table that
at the commencement of the operation, the counter is set as shown against CLK 1. Before
CLK 2 is applied at FF1 input, the F input to it should be 0, so that its output changes from
1 to 0. Since Q2 and Q3 are both 1, the F input to FF1 will be 0. This condition is, therefore,
satisfied. The second clock pulse, therefore, changes Q1 from 1 to 0 and Q2 and Q3 remain
on 1 as the inputs to these flip-flops are 1. Since both Q2 and Q3 are again 1, the F input
to FF1, before the arrival of the 3rd clock pulse will again be 0. Therefore, on the arrival of
CLK pulse 3, the output of Q1 will remain 0, as the input to it is 0. On the same CLK pulse
Q2 will change from 1 to 0 as the input to it is 0 and Q3 will remain on 1 as the input to
Q3 is still 1. Successive changes in the outputs have been worked out on this basis.

SHIFT REGISTERS AND COUNTERS 309

Table 7.22

Clock interval Flip-flop outputs Input to FF1

CLK F = (Q2 ⊕ Q3)

Q1 Q2 Q3

1 1 1 1 0

2 0 1 1 0

3 0 0 1 1

4 1 0 0 0

5 0 1 0 1

6 1 0 1 1

7 1 1 0 1

.

.

.

.

1 1 1 1 1

7.5 EXERCISE
1. Can one store decimal number 12 in an 8-bit shift register.

2. The number stored in a 4-bit binary up-counter is 0101. What will be state of the
counter after the following clock pulses?

(a) 3rd clock pulse

(b) 5th clock pulse

(c) 8th clock pulse

(d) 12th clock pulse

3. In a 4-bit ripple up-counter how many clock pulses will you apply, starting from
state 0 0 0 0, so that the counter outputs are as follows ?

(a) 0 0 1 0

(b) 0 1 1 1

(c) 1 0 0 1

(d) 1 1 1 0

4. Draw the logic diagram for a binary up-counter using four JK flip-flops and draw the
truth table and the output waveforms.

5. Connect four edge-triggered D-type flip-flops to make an asynchronous up-counter.

6. How many JK flip-flops will you require to make the following modulo counters?

(a) Mod-4 (b) Mod-6

(c) Mod-9 (d) Mod-11

7. What will be maximum count capability of a counter having 12 JK flip-flops?

310 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

8. How many flip-flops will you require to attain a count capability of 8500?

9. An asynchronous counter has four flip-flops and the propagation delay of each flip-
flop is 20 ns. Calculate the maximum counting speed of the counter.

10. A synchronous counter has four flip-flops and the propagation delay of each is 20 ns.
What is its maximum counting speed?

11. By how much will a ripple down-counter having three flip-flops divide the input
frequency?

12. Draw a logic diagram, truth table and output waveforms for a ripple down-counter
with four flip-flops.

13. What will be the output states of a four flip-flop binary down-counter, after the
following input clock pulses, if the initial state of the counter was 1111?

(a) 4 (b) 7 (c) 9 (d) 14

14. Draw the logic diagram of a presettable down counter with a maximum preset
capability of 7.

15. What will be the modulus of IC 74193 in the up-counting mode, if the numbers
preset in the counter are as follows?

(a) Decimal 5 (b) Decimal 7

(c) Decimal 9 (d) Decimal 12

16. What will be the modulus of IC 74193 in the down-counting mode, when the binary
numbers preset in the counter are the same as in Problem 15?

17. A 74193 up-counter starts counting up from binary number 1 0 0 0. What will be
the state of the counter after the 8th clock pulse?

18. Draw the logic diagram of a Mod-6 counter using the counter reset method. Write
its truth table and draw the output waveforms.

19. Show how you will connect two ICs 74193 to build an 8-bit up-down counter.

20. What is the maximum counting capacity of a chain of five BCD counters?

21. A BCD counter is required to have the following states. After how many clock pulses
will these states be reached, if the counter was initially reset?

(a) 0 0 1 0

(b) 0 1 0 0

(c) 0 1 1 0

(d) 1 0 0 1

22. Connect two ICs 74193 to make a moduluo-20 divider circuit.

23. Design a mod-10 (Decade) synchronous counter using JK flip-flops.

24. Draw decoding gates for the decade counter in Fig. 4.51.

25. Draw decoding gates for the counter of Fig. 4.49.

26. Redesign the synchronous mod-5 counter circuit discussed in Sec 4.8.12.2 so that
whenever the counter reaches the unutilized state 1 0 1, 0 1 1 and 1 1 1 the counter
is reset.

27. Design a Mod-7 counter using IC 7490 A.

SHIFT REGISTERS AND COUNTERS 311

28. Design a divide-by 120 counter using ICs 7490 A and 7492 A.

29. Design a correcting circuit for a 4-stage ring counter using a NAND gate instead
of a NOR gate as used in Fig. 4.80.

30. Determine the maximal length sequence, which can be generated using four JK flip-
flops and draw the sequence generated by the first flip-flop in the chain.

31. Draw waveforms to illustrate how a serial binary number 1011 is loaded into a shift
register.

32. A binary number is to be divided by 64. By how many positions will you shift the
number and in what direction.

33. Describe the working of shift register with PISO/SIPO operation.

34. Design a mod-5 synchronous counter having the states 011, 100, 101, 110, 111
respectively. Obtain a minimal cost design with J-K F/F.

35. Design a shift register counter to generate a sequence length of 8 having self-start
feature.

312 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

312

8.0 INTRODUCTION
There are two types of digital circuits, namely combinational and sequential circuits. In

combinational circuits, output at any instant of time is entirely dependent on the input present
at that time. On the other hand, sequential circuits are those in which the output at any instant
of time is determined by the applied input, and past history of these inputs. Alternately,
sequential circuits are those in which output at any given time is not only dependent on the
input present at that time but also on previous outputs. This give rise to memory. A sequential
circuit can be regarded as a collection of memory elements and combinational circuits. The
binary information stored in memory element at any given time is defined as the state of
sequential circuit at that time. Present contents of memory elements is referred as the current
state. The combinational circuit receives the signals from external input and from the memory
output and determines the external output. They also determine the condition and binary
values to change the state of memory. The new contents of the memory elements are referred
as next state and depends upon the external input and present state. Hence, a sequential circuit
can be completely specified by a time sequence of inputs, outputs and internal states. In general,
clock is used to control the operation. The clock frequency determines the speed of operation
of a sequential circuit.

There exists two main categories of sequential circuits, namely synchronous and asyn-
chronous sequential circuits.

A sequential circuit whose behaviour depends upon the sequence in which the inputs are
applied, is called Asynchronous Sequential Circuit. In these circuits, outputs are affected
whenever a change in inputs is detected.

A synchronous sequential circuit may be defined as a sequential circuit, whose state can
be affected only at discrete instants of time. The synchronization is achieved by using a timing
device, termed as System Clock Generator, which generates a periodic train of clock pulses.
Synchronous sequential circuits are discussed in chapter 6.

All the state variables in sequential circuits are binary in nature. Therefore, total pos-
sible states for the sequential circuit having state variables ‘n’ is 2n. Even for larger values
of ‘n’, the number of possible state is finite. Therefore, sequential circuits are referred to as
finite state machines (FSM).

8.1 GENERAL MODEL OF FSM
A typical sequential system is composed of

C
H

A
P

T
E

R 8
INTRODUCTORY CONCEPT OF

FINITE STATE MACHINES

INTRODUCTORY CONCEPT OF FINITE STATE MACHINE 313

• Inputs
• Internal state of the system stored in the memory elements
• Outputs
• Next state decoder
• Output decoder

The model for a general sequential circuit is shown in Fig. 8.1. The current state/present
state of the circuit is stored in the memory element. The memory can be any device capable
of storing information to specify the state of the system.

Both the next state and output are functions of the input and current state

Next state = G (Input, current state)

Output = F (Input, current state)
The next state of the system is determined by the present state (current state) and by

the inputs. The function of the next state decoder is to decode the external inputs and the
current state of the system (stored in memory) and to generate at its output a code called
next state variable.

When the next state variables stored in the memory, they became the present state
variables. This process is called a state change. State changing is a continuous process with
new set of inputs and each new state being decoded to form the new next state variables.

The output of the circuit is determined by the present state of the machine and by the
inputs. The function of the output decoder is to decode the current state of the machine and
the present inputs for the purpose of generating the desired outputs.

Output
function F

Output = F (Input, current state)

Current state

Next state = G (Input, current state)

State registers

Next state
function G

Input

Fig. 8.1 General model of FSM

314 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

8.2 CLASSIFICATION OF FSM (MEALY & MOORE MODELS)
FSM are classified into five different classes:

(i) Class A machine

(ii) Class B machine

(iii) Class C machine

(iv) Class D machine

(v) Class E machine

The different models for the five classes can be derived from the general model of FSM
shown in Fig. 8.1.

The class A machine is defined as a MEALY machine named after G.H. Mealy, a pioneer
in this field. The basic property of Mealy machine is that the output is a function of the
present input conditions and the current state of machine.

The class A machine is shown in Fig. 8.2.

Mealy (Class A) Machine

Output
function F

Output = F (Input, current state)

Current state

Next state = G (Input, current state)

State registers

Next state
function G

Input

Fig. 8.2 Mealy machine

The class B and class C machines are defined as MOORE machines, named after another
pioneer E.F. Moore. In Moore machines, the output is associated only with the current state
(present state). The block diagram of class B and class C machines are shown in Fig. 8.3 and
8.4, respectively.

INTRODUCTORY CONCEPT OF FINITE STATE MACHINE 315

Moore (Class B) Machine

Output =
F (Current state)

Output
function F

Current state

State registers

Next state =
G (Input, current state)

Next state
function G

Input

Class C Machine

State registers

Next state
function G

Next state =
G (Input, current state)

Input

Output =
Current state

Fig. 8.3 Fig. 8.4

The counters are Moore machines as the output depends only on the state of the
memory elements (on the state of the flip-flops). Another example of Moore machine is
sequence detector.

Serial adder, is an example of Mealy machine. Also fundamental mode asynchronous
sequential circuit will be discussed in chapter 9 are Mealy machines as the output depends
on the inputs apart from the internal state.

The block diagram for class D and class E machines are shown in Figs. 8.5 and 8.6,
respectively.

Class D Machine

State registers

Next state
function G

Next state = G (Input)

Output = Current state

Input

Next state = (Input)

Output = Current state

Class E Machine

State registers

Fig. 8.5 Fig. 8.6

Finite state machine can be designed to control processes of digital nature (discrete in
time, binary in variable values) which can be described by Boolean algebra. This is compa-

316 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

rable with but different from the PID controllers which are used to control processes of analog
nature (continuous in both time and variable values) described by differential equations.
Fig. 8.7 shows FSM used as a controller.

Finite State Machine (FSM) used as a Controller

System under
control

Controller
(FSM)

Control input

Control ouput
System
output
(feedback)

Fig. 8.7

8.3 DESIGN OF FSM
With the help of following steps one can design an FSM for solving a given problem:

1. Understand the problem and determine the number of states needed. If there are
N states, then at least log2N flip-flop’s are needed to represent these states. This
is the most important step.

2. Draw the state diagram. At each state, find out where to go as the next sate and
what outputs to generate under each combination of inputs.

3. Make the state table based on the state diagram. The current state (represented
by the Q(t)’s of the FFs) and inputs are listed on the left as arguments, while the
corresponding next state (represented by Q(t + 1)’s of the FFs) and outputs are
listed on the right as the functions.

4. Design the next state decoder and the output decoder using the state table as
the truth table. If D-FFs are used then Qi(t + 1) of the ith FF can be used directly
as the signal Di to set the FF. However, when other types of FFs are to be used,
the excitation table is helpful to figure out the signals (S, R, J, K or T) needed to
realise the desired state transition: Q(t) → Q(t + 1) for each of the FFs.

5. Simplify the functions by K-map, and implement the next state and output
decoders at logic gate level.

Note: Many of the problems of interest to us only require Moore or class B machine (the
outputs are functions of the state only) or class C machine (the outputs are the same as the
state). In these cases, the outputs can be generated as functions of the new state after the
transition is completed. Sequential machines are discussed in detail in chapters 6, 7 and 9.
Refer these chapters for analysis and designing of sequential machines.

INTRODUCTORY CONCEPT OF FINITE STATE MACHINE 317

Previous
state A

Input/F (Input, A)

Previous
state B

Next state C Next state D

B = G (Input, A)

Input 1/F (Input 1, B) Input 2/F (Input 2, B)

C = G (Input 1, B) D = G (Input 2, B)

Next state = G (Input, present state)
Output = F (Input, present state)

8.4 DESIGN EXAMPLES
Example 1. A serial adder receives two operands A = an–1, ..., ai, ... a0 and B = bn–1, ...,

bi, ... b0 as two sequences of bits (i = 0, 1,..., n – 1) and adds them one bit at a time to generate
the sequence of bits si of the sum as the output. Implement this serial adder as a finite state
machine.

Solution:
• Inputs ai and bi
• Output si
• Two states: carry S = 1, or no carry S = 0
• State diagram:

10/1

0
No carry

1
Carry

00/0

01/1
00/1

11/0

01/0

10/0

11/1

• State table:

Present Inputs Next Output

state S ai bi State S′ Si

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

318 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

0 0

1 1

0

1

S
ab

00 01

S = ab + aS + bS�

1 0

1 1

11 10

0 1

1 0

0

1

S
ab

00 01

s = a b Si � �

0 1

1 0

11 10

• Next state decoder: S′ = G(ai, bi, S) = aibi + aiS + biS

• Output decoder: si = F(ai, bi, S) = ai ⊕ bi ⊕ S
The FSM implementation of the serial adder contains three pieces of hardware: (i) a D-

FF for keeping the state (whether or not there is a carry from the ith bit to the (i+1)th bit),
(ii) the next state decoder S = aibi + ai S +bi S that sets the D-FF, and (iii) the output decoder
that generates the sum bit si = ai ⊕ bi ⊕ S. Note that a MS-FF is used for the output so that
the output is a function of the current state and input, and it will stay unchanged after the
state transition (from current to next state).

a

b

D

S

D
S

Clock

Next state
decoder

Output
decoder

Example 2. Design the FSM controller for the traffic lights at an intersection (North/
South (NS) vs. East/West (EW) with green and red lights only. The rule: (a) if no car detected,
stay the same state, (b) if cars are detected in the direction with red light (independent of
whether cars are detected in the direction with green light), switch state.

Solution:

• States:

S = 0: NS green (EW red);

S = 1: EW green (NS red).

• Inputs:

NS = 1/0: NS car detected/not detected

EW = 1/0: EW car detected/not detected

• Output: same as states (a class C FSM).

INTRODUCTORY CONCEPT OF FINITE STATE MACHINE 319

The state diagram:

S = 0
NS green

NS = 1
EW = X

EW = 1
NS = X

EW = X
NS = 0

EW = 0
NS = X

S = 1
EW green

The state table:

Present Inputs’ Next Signals to trigger the FF

State (PS) NS EW State (NS) D S R J K T

0 × 0 0 0 0 × 0 × 0

0 × 1 1 1 1 0 1 × 1

1 0 × 1 1 × 0 × 0 0

1 1 × 0 0 0 1 × 1 1

The next state decoder can be implemented in any of the four types of flip-flops. Given
the desired state transition (from present state to next state), the signals needed to trigger
the chosen FF can be obtained by the excitation table (also shown in the state table), to be
generated by the next state decoder. Note that if D-FF is used, the triggering signal is the
same as the desired next state.

• D-FF: D = �� .EW + PS.��

• RS-FF: S = �� .EW, R = PS.NS

• JK-FF: J = EW, K = NS

• T-FF: T = �� .EW + PS.NS

EW

NS

S EW green

NS green

NS

EW

T
EW green

NS green

R

EW

NS

EW green

NS green

J

K

NS

EW
EW green

NS green

D

320 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

8.5 CAPABILITIES AND LIMITATIONS OF FINITE STATE MACHINES
What can a machine do? Are there any limitations on the type of input-output transfor-

mations that can be performed by a machine? Is any restrictions on the capabilities of the
machine by the finiteness of the number of its states? The following paragraphs elaborate on
the capabilities and limitations of finite state machines.

Suppose that an arbitrarily long sequence of 1’s be the input to an n-state sequential
machine. If we assume the sequence be long enough so that it is longer than n and the
machine eventually repeat its state. Therefore, from this point machine continue in a peri-
odically repeating fashion because of the input remains the same. Hence, for an n-state
sequential machine, the period cannot exceed n, and could be smaller. Also the transient time
until the output reaches its periodic pattern cannot exceed the number of states n. This result
can be generalized to any arbitrary input consisting of a string of repeated symbols. From this
conclusion we obtain many results which exhibit the limitations of FSM.

Suppose that we want the machine to produce an output 1 for a periodic input such as
a continuous string of 1s to a sequential machine, when and only when the number of inputs

that it has received, is equal to
��� ��

�

+
, for K = 1, 2, 3, The input-output has the

form

 Input = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Output = 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0

Clearly, the output does not become periodic. No finite state machine can be designed
to produce such a non-periodic infinite sequence for a periodic input.

As another example showing the limitations on the capabilities of finite-state machines,
we show that no finite-state machine with a fixed number of states can multiply two large
arbitrary binary numbers.

In case of serial multiplication, it is necessary to produce partial products and add them
to produce the final product. Suppose, there exists an n-state machine which can produce the
product of two arbitrarily long numbers. Let we choose the two numbers for multiplication
as 2p × 2p = 22p. Also assume p is greater than n (p > n). Each of the two numbers is
represented by 1 followed by p 0’s. The product 22p is represented by 1 followed by 2p 0’s.
The input numbers are serially fed to the machine with LSB first and MSB last.

The inputs are fed during the first (p+1) time units, that is, from t1 till tp+1 as shown
below. During this period the machine produces 0’s. In the duration between tp+1 and t2p+1,
the machine does not receive any inputs but machine go on producing more 0’s followed by
a 1 at t2p+1 which is not realisable.

Time unit t2p+1 t2p tp+1 tp t2 t1

First number 1 0 0 0
(multiplicand)

Second number 1 0 0 0
(multiplier)

Product 1 0 0 0 0 0

Initially we assume that p was greater than n. The machine has already received p 0’s
on the inputs. Therefore, it must have been twice in one of its state since p ≥ n, and the

INTRODUCTORY CONCEPT OF FINITE STATE MACHINE 321

output must be periodic from that point onwards and the period is smaller than p. Therefore,
machine will never produce the required 1 output at t2p+1.

For any two finite numbers, we can find a FSM which can multiply them and produce
the product. But for every FSM capable of performing serial multiplication, we can find such
numbers which it could not multiply. The reason for this limitation is limited “memory”
availability to the machine.

8.6 EXERCISE
1. Differentiate combinational and sequential circuits.

2. How sequential circuits are classified?

3. Distinguish Mealy and Moore machines.

4. Write down the steps involved in the Design of FSM.

5. Discuss limitations of FSM with suitable example.

322 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

322

9.0 INTRODUCTION
Much of today’s logic design is based on two major assumptions: all signals are binary,

and time is discrete. Both of these assumptions are made in order to simplify logic design.
By assuming binary values on signals, simple Boolean logic can be used to describe and
manipulate logic constructs. By assuming time is discrete, hazards and feedback can largely
be ignored. However, as with many simplifying assumptions, a system that can operate
without these assumptions has the potential to generate better results.

Asynchronous circuits keep the assumption that signals are binary, but remove the
assumption that time is discrete. This has several possible benefits:

No Clock Skew
Clock skew is the difference in arrival times of the clock signal at different parts of the

circuit. Since asynchronous circuits by definition have no globally distributed clock, there is no
need to worry about clock skew. In contrast, synchronous systems often slow down their circuits
to accommodate the skew. As feature sizes decrease, clock skew becomes a much greater concern.

Lower Power
Standard synchronous circuits have to toggle clock lines, and possibly precharge and

discharge signals, in portions of a circuit unused in the current computation. For example,
even though a floating point unit on a processor might not be used in a given instruction
stream, the unit still must be operated by the clock. Although asynchronous circuits often
require more transitions on the computation path than synchronous circuits, they generally
have transitions only in areas involved in the current computation.

Note: that there are techniques being used in synchronous designs to address this issue
as well.

Average-Case Instead of Worst-Case Performance
Synchronous circuits must wait until all possible computations have completed before

latching the results, yielding worst-case performance. Many asynchronous systems sense
when a computation has completed, allowing them to exhibit average-case performance. For

C
H

A
P

T
E

R 9
ASYNCHRONOUS SEQUENTIAL LOGIC

ASYNCHRONOUS SEQUENTIAL LOGIC 323

circuits such as ripple-carry adders where the worst-case delay is significantly worse than the
average-case delay, this can result in a substantial savings.

Easing of Global Timing Issues
In systems such as a synchronous microprocessor, the system clock, and thus system

performance, is dictated by the slowest (critical) path. Thus, most portions of a circuit must
be carefully optimized to achieve the highest clock rate, including rarely used portions of the
system. Since many asynchronous systems operate at the speed of the circuit path currently
in operation, rarely used portions of the circuit can be left unoptimized without adversely
affecting system performance.

Better Technology Migration Potential
Integrated circuits will often be implemented in several different technologies during

their lifetime. Early systems may be implemented with gate arrays, while later production
runs may migrate to semi-custom or custom ICs. Greater performance for synchronous
systems can often only be achieved by migrating all system components to a new technology,
since again the overall system performance is based on the longest path. In many asynchronous
systems, migration of only the more critical system components can improve system perform-
ance on average, since performance is dependent on only the currently active path. Also, since
many asynchronous systems sense computation completion, components with different delays
may often be substituted into a system without altering other elements or structures.

Automatic Adaptation to Physical Properties
The delay through a circuit can change with variations in fabrication, temperature, and

power-supply voltage. Synchronous circuits must assume that the worst possible combination
of factors is present and clock the system accordingly. Many asynchronous circuits sense
computation completion, and will run as quickly as the current physical properties allow.

Robust Mutual Exclusion and External Input Handling
Elements that guarantee correct mutual exclusion of independent signals and synchro-

nization of external signals to a clock are subject to metastability. A metastable state is an
unstable equilibrium state, such as a pair of cross-coupled CMOS inverters at 2.5V, which a
system can remain in for an unbounded amount of time. Synchronous circuits require all
elements to exhibit bounded response time. Thus, there is some chance that mutual exclusion
circuits will fail in a synchronous system. Most asynchronous systems can wait an arbitrarily
long time for such an element to complete, allowing robust mutual exclusion. Also, since
there is no clock with which signals must be synchronized, asynchronous circuits more
gracefully accommodate inputs from the outside world, which are by nature asynchronous.

With all of the potential advantages of asynchronous circuits, one might wonder why
synchronous systems predominate. The reason is that asynchronous circuits have several
problems as well. Primarily, asynchronous circuits are more difficult to design in an ad hoc
fashion than synchronous circuits. In a synchronous system, a designer can simply define the
combinational logic necessary to compute the given functions, and surround it with latches.
By setting the clock rate to a long enough period, all worries about hazards (undesired signal
transitions) and the dynamic state of the circuit are removed. In contrast, designers of
asynchronous systems must pay a great deal of attention to the dynamic state of the circuit.
Hazards must also be removed from the circuit, or not introduced in the first place, to avoid
incorrect results. The ordering of operations, which was fixed by the placement of latches in

324 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

a synchronous system, must be carefully ensured by the asynchronous control logic. For
complex systems, these issues become too difficult to handle by hand.

Finally, even though most of the advantages of asynchronous circuits are towards higher
performance, it isn’t clear that asynchronous circuits are actually any faster in practice.
Asynchronous circuits generally require extra time due to their signaling policies, thus in-
creasing average-case delay. Whether this cost is greater or less than the benefits listed
previously is unclear, and more research in this area is necessary.

Even with all of the problems listed above, asynchronous design is an important research
area. Regardless of how successful synchronous systems are, there will always be a need for
asynchronous systems. Asynchronous logic may be used simply for the interfacing of a syn-
chronous system to its environment and other synchronous systems, or possibly for more
complete applications.

9.1 DIFFERENCE BETWEEN SYNCHRONOUS AND ASYNCHRONOUS
Sequential circuits are divided into two main types: synchronous and asynchronous.

Their classification depends on the timing of their signals.

Synchronous sequential circuits change their states and output values at discrete in-
stants of time, which are specified by the rising and falling edge of a free-running clock signal.
The clock signal is generally some form of square wave as shown in Figure 9.1 below.

Clock period

Falling edge

Rising edge
Clock width

Fig. 9.1 Clock signal

From the diagram you can see that the clock period is the time between successive
transitions in the same direction, that is, between two rising or two falling edges. State
transitions in synchronous sequential circuits are made to take place at times when the clock
is making a transition from 0 to 1 (rising edge) or from 1 to 0 (falling edge). Between
successive clock pulses there is no change in the information stored in memory.

The reciprocal of the clock period is referred to as the clock frequency. The clock width
is defined as the time during which the value of the clock signal is equal to 1. The ratio of
the clock width and clock period is referred to as the duty cycle. A clock signal is said to be
active high if the state changes occur at the clock’s rising edge or during the clock width.
Otherwise, the clock is said to be active low. Synchronous sequential circuits are also known
as clocked sequential circuits.

The memory elements used in synchronous sequential circuits are usually flip-flops.
These circuits are binary cells capable of storing one bit of information. A flip-flop circuit has
two outputs, one for the normal value and one for the complement value of the bit stored
in it. Binary information can enter a flip-flop in a variety of ways, a fact which give rise to
the different types of flip-flops.

ASYNCHRONOUS SEQUENTIAL LOGIC 325

In asynchronous sequential circuits, the transition from one state to another is initiated
by the change in the primary inputs; there is no external synchronization. The memory
commonly used in asynchronous sequential circuits are time-delayed devices, usually imple-
mented by feedback among logic gates. Thus, asynchronous sequential circuits may be re-
garded as combinational circuits with feedback. Because of the feedback among logic gates,
asynchronous sequential circuits may, at times, become unstable due to transient conditions.

The differences between synchronous and asynchronous sequential circuits are:

• In a clocked sequential circuit a change of state occurs only in response to a
synchronizing clock pulse. All the flip-flops are clocked simultaneously by a common
clock pulse. In an asynchronous sequential circuit, the state of the circuit can
change immediately when an input change occurs. It does not use a clock.

• In clocked sequential circuits input changes are assumed to occur between clock
pulses. The circuit must be in the stable state before next clock pulse arrives. In
asynchronous sequential circuits input changes should occur only when the circuit
is in a stable state.

• In clocked sequential circuits, the speed of operation depends on the maximum
allowed clock frequency. Asynchronous sequential circuits do not require clock pulses
and they can change state with the input change. Therefore, in general the asynchro-
nous sequential circuits are faster than the synchronous sequential circuits.

• In clocked sequential circuits, the memory elements are clocked flip-flops. In asyn-
chronous sequential circuits, the memory elements are either unclocked flip-flops
(latches) or gate circuits with feedback producing the effect of latch operation.

In clocked sequential circuits, any number of inputs can change simultaneously (during
the absence of the clock). In asynchronous sequential circuits only one input is allowed to
change at a time in the case of the level inputs and only one pulse input is allowed to be
present in the case of the pulse inputs. If more than one level inputs change simultaneously
or more than one pulse input is present, the circuit makes erroneous state transitions due
to different delay paths for each input variable.

9.2 MODES OF OPERATION
Asynchronous sequential circuits can be classified into two types:

• Fundamental mode asynchronous sequential circuit

• Pulse mode asynchronous sequential circuit

Fundamental Mode
In fundamental mode, the inputs and outputs are represented by levels rather than

pulses. In fundamental mode asynchronous sequential circuit, it is also assumed that the time
difference between two successive input changes is larger than the duration of internal
changes. Fundamental mode operation assumes that the input signals will be changed only
when the circuit is in a stable state and that only one variable can change at a given time.

Pulse Mode
In pulse mode, the inputs and outputs are represented by pulses. In this mode of

operation the width of the input pulses is critical to the circuit operation. The input pulse
must be long enough for the circuit to respond to the input but it must not be so long as to

326 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

be present even after new state is reached. In such a situation the state of the circuit may
make another transition.

The minimum pulse width requirement is based on the propagation delay through the
next state logic .The maximum pulse width is determined by the total propagation delay
through the next state logic and the memory elements.

In pulse-mode operation, only one input is allowed to have pulse present at any time.
This means that when pulse occurs on any one input, while the circuit is in stable state, pulse
must not arrive at any other input. Figure 9.2 illustrates unacceptable and acceptable input
pulse change. X1 and X2 are the two inputs to a pulse mode circuit. In Fig. 9.2 (a) at time
t3 pulse at input X2 arrives.

X1

t1 t2 t4 t5

t6t3

X2

t

t

Fig. 9.2 (a) Unacceptable pulse mode input changes

X2

X1 t

t

Fig. 9.2 (b) Acceptable pulse mode input changes

While this pulse is still present, another pulse at X1 input arrives at t4. Therefore, this
kind of the presence of pulse inputs is not allowed.

Both fundamental and pulse mode asynchronous sequential circuits use unclocked S-R
flip-flops or latches. In the design of both types of circuits, it is assumed that a change occurs
in only one inputs and no changes occurs in any other inputs until the circuit enters a stable
state.

9.3 ANALYSIS OF ASYNCHRONOUS SEQUENTIAL MACHINES
Analysis of asynchronous sequential circuits operation in fundamental mode and pulse

mode will help in clearly understanding the asynchronous sequential circuits.

9.3.1 Fundamental Mode Circuits
Fundamental mode circuits are of two types:

• Circuits without latches

• Circuits with latches

9.3.2 Circuits without Latches
Consider a fundamental mode circuit shown in Fig. 9.3.

ASYNCHRONOUS SEQUENTIAL LOGIC 327

()a

Next State
Logic

External
Inputs

Output
logic

Q1

Q2X2

X1

Next State
Logic

Output Logic
Q1

Q2

Y

X1
X2

X2

X2

X1

X2

X1

X1

X2

Q1
Q2

Q2

Q1

Q2

Q2

X1

X2

(b)

Fig. 9.3 Fundamental mode asynchronous sequential circuit without latch
(a) block diagram (b) circuit diagram

328 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

This circuit has only gates and no explicit memory elements are present. There are two
feedback paths from Q1 and Q2 to the next-state logic circuit. This feedback creates the
latching effect due to delays, necessary to produce a sequential circuit. It may be noted that
a memory element latch is created due to feedback in gate circuit.

The first step in the analysis is to identify the states and the state variables. The
combination of level signals from external sources X1, X2 is referred to as the input state and
X1, X1 are the input state variables. The combination of the outputs of memory elements are
known as secondary, or internal states and these variables are known as internal or secondary
state variables. Here, Q1 and Q2 are the internal variables since no explicit elements are
present. The combination of both, input state and the secondary state (Q1, Q2, X1, X2) is
known as the total state. Y is the output variable.

The next secondary state and output logic equations are derived from the logic circuit
in the next-state logic block. The next-secondary state variables are denoted by Q1

+ and Q2
+

these are given by

� � � � � � � � �

� � � � � � � �

� � � �

�
�

� � � � � � � �

�
�

� � � � � � �

� � �

= + +

= + +
= ⊕ ⊕

Here, Q1 and Q2 are the present secondary state variables when X1, X2 input-state
variables occur, the circuit goes to next secondary state. A state table shown in Table 9.1 is
constructed using these logic equations. If the resulting next secondary state is same as the

present state, i.e. � � ��	 � ��
�

� �
�

�= =
 the total state Q1, Q2, X1, X2 is said to be stable.
Otherwise it is unstable.

The stability of the next total state is also shown in Table 9.1.

Table 9.1 State Table

Present total state Next total state Stable total state Output

Q1 Q2 X1 X2 �
�
� �

�
� X1 X2 Yes/No Y

0 0 0 0 0 0 0 0 Yes 0
0 0 0 1 0 1 0 1 No 0
0 0 1 1 0 0 1 1 Yes 1
0 0 1 0 1 0 1 0 No 1
0 1 0 0 0 0 0 0 No 1
0 1 0 1 1 1 0 1 No 1
0 1 1 1 0 1 1 1 Yes 0
0 1 1 0 1 1 1 0 No 0
1 1 0 0 0 0 0 0 No 0
1 1 0 1 1 1 0 1 Yes 0
1 1 1 1 0 1 1 1 No 1
1 1 1 0 1 1 1 0 Yes 1
1 0 0 0 0 0 0 0 No 1
1 0 0 1 1 0 0 1 Yes 1
1 0 1 1 1 0 1 1 Yes 0
1 0 1 0 1 0 1 0 Yes 0

ASYNCHRONOUS SEQUENTIAL LOGIC 329

9.3.3 Transition Table
A state table can be represented in another form known as transition table. The tran-

sition table for the state table of Table 9.1 is shown in Fig. 9.4.

In a transition table, columns represent input states (one column for each input state)
and rows represent secondary states (one row for each secondary state). The next secondary
state values are written into the squares, each indicating a total state. The stable states are
circled. For any given present secondary state (Q1 Q2), the next secondary state is located in
the square corresponding to row for the present secondary state and the column for the input
state (X1 X2).

For example, for Q1 Q2 = 11 and X1 X2 = 00, the next secondary state is 00 (third row,
first column) which is an unstable state.

00 00

01

1111

10 10 10

1001

11 11

00

00

00

01

00 01 11 10

00

01

11

10

Q1 Q2

X1 X2

Q1 Q2

Next state
+ +Input state

Present internal
state

Fig. 9.4 Transition table for table 9.1

For a given input sequence, the total state sequence can be determined from the tran-
sition table.

Example. For the transition table shown in Fig 9.4, the initial total state is Q1 Q2 X1
X2 = 0000. Find the total state sequence for an input sequence X1 X2 = 00, 01, 11, 10, 00.

Solution. For a given internal state of the circuit, a change in the value of the circuit
input causes a horizontal move in the transition table to the column corresponding to the new
input value. A change in the internal state of the circuit is reflected by a vertical move. Since
a change in the input can occur only when the circuit is in a stable state, a horizontal move
can start only from a circled entry.

The initial total state is 0000 (first row, first column) which is a stable state. When the
input state changes from 00 to 01, the circuit makes a transition (horizontal move) from the
present total state to the next total state 0101 (first row, second column) which is unstable.
Next, the circuit makes another transition from 0101 to 1101 (vertical move) (second row,
second column) which is also an unstable state. Finally in the next transition (vertical move)
it comes to stable state 1101 (third row, second column). All these transitions are indicated
by arrows. Thus we see that a single input change produces two secondary state changes

330 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

before a stable total state is reached. If the input is next changed to 11 the circuit goes to
total state 0111 (horizontal move) which is unstable and then to stable total state 0111 (vertical
move). Similarly, the next input change to 10 will take the circuit to unstable total state 1110
(horizontal move) and finally to stable total state 1110 (vertical move). A change in input state
from 10 to 00 causes a transition to unstable total state 0000 (horizontal move) and then to
stable total state 0000 (vertical move), completing the state transitions for the input sequence.
All the state transitions are indicated by arrows.

The total state sequence is

0000 0101 1101 0111 1110 0000 .

From the preceding discussions we see that from the logic diagram of an asynchronous
sequential circuit, logic equations, state table, and transition table can be determined. Similarly,
from the transition table, logic equations can be written and the logic circuit can be designed.

9.3.4 Flow table
In asynchronous sequential circuits design, it is more convenient to use flow table rather

than transition table. A flow table is basically similar to a transition table except that the
internal states are represented symbolically rather than by binary states. The column head-
ings are the input combinations and the entries are the next states, and outputs. The state
changes occur with change of inputs (one input change at a time) and logic propagation delay.

The flow of states from one to another is clearly understood from the flow table. The
transition table of Fig. 9.4 constructed as a flow table is shown in Fig. 9.5. Here, a, b, c, and
d are the states. The binary value of the output variable is indicated inside the square next
to the state symbol and is separated by a comma. A stable state is circled.

a d, 1b, o

c, 1 c, 0

a, 1

a, 0

a, 1

b, 1

00 01 11 10

a

b

c

d

Q1Q2

X1 X2

Input state

Present internal
state

, 0

d , 1 d , 0 d , 0

c , 1

b , 0

a , 1

c , 1

U
ns

ta
bl

e
St

at
e

O
utput

Stable state

 Fig. 9.5 Flow table

From the flow table, we observe the following behavior of the circuit.

When X1 X2 = 00, the circuit is in state � . It is a stable state. If X2 changes to 1 while
X1 = 0, the circuit goes to state b (horizontal move) which is an unstable state. Since b is an
unstable state, the circuit goes to c (vertical move), which is again an unstable state. This

ASYNCHRONOUS SEQUENTIAL LOGIC 331

causes another vertical move and finally the circuit reaches a stable state � . Now consider
X1 changing to 1 while X2 = 1, there is a horizontal movement to the next column. Here b
is an unstable state and therefore, there is a vertical move and the circuit comes to a stable
state � . Next change in X2 from 1 to 0 while X1 remaining 1 will cause horizontal move to
state c (unstable state) and finally to stable state � due to the vertical move. Similarly
changing X1 from 1 to 0 while X2 = 0 will cause the circuit to go to the unstable state a and
finally to stable state � . The flow of circuit states are shown by arrows.

In the flow table of Fig. 9.5, there are more than one stable states in rows. For example,
the first row contains stable states in two columns. If every row in a flow table has only one
stable state, the flow table is known as a primitive flow table.

From a flow table, transition table can be constructed by assigning binary values to each
state and from the transition table logic circuit can be designed by constructing K-maps for

� ��	���
�

�
��

9.3.5 Circuits with Latches
In chapter 6 latches were introduced. Latch circuits using NAND and NOR gates are

shown in Fig. 9.6.

S

R

Q

Q

R

S

Q

Q

()a

()b

Fig. 9.6 (a) � � latch using NAND gates (b) S-R latch using NOR gates

For the circuit of Fig 9.6(a), the next-state equation is

� �� �����

 � ��

� = =

=
Similarly, for the circuit of Fig. 9.6(b), the next-state equation is

� � � � � � � � ��

� � � ��

� � ��

� = =

= +

=
Since, S = R = 1 is not allowed, which means SR = 0, therefore,

� � � �� �� = + = + =
which gives,

� ��+ = + It is same as the next-state equation for the circuit of Fig 9.6(a)

332 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The transition table of S-R latch is shown in Fig. 9.7.

Q

0

1

0

1

0

0 0

0

1

1

SR
00 01 11 10

Q+

 = SR + RQ
 = S + RQ

Q+

Fig. 9.7 Transition table of S-R latch

From the transition table of S-R FLIP-FLOP, we observe that when SR changes from 11
to 00 the circuit will attain either the stable state (first row, first column) or ① (second row,
first column) depending upon whether S goes to 0 first or R goes to 0 first respectively.
Therefore, S= R = 1 must not be applied.

Consider an asynchronous sequential circuit with latches shown in Fig. 9.9.

S1

R1

S2

R2

S-R
FF-2

Q1

X1
X2
Q1

Q2

Q1

Q2

Q2

S-R
FF-1

X1
X2
Q2

X1
Q2

X1
X2
Q1

X1
X2
Q1

0

Y

Fig. 9.8 Asynchronous sequential circuit with latches

For FF-1, R1 = 0 and the excitation equation for S1 is

S1 = � � � � �� � � � �+

The next-state equation is

��
� = � �� � �+

Substituting the value of S1 we obtain,

��
� = � � � � � �� � � � � �+ +

Similarly, the excitation equations for FF-2 are

S2 = � � � � �� � �� � � � � � �

ASYNCHRONOUS SEQUENTIAL LOGIC 333

The next-state equation is

��
� = � �� � �+

= � � � � � � � �� � � � � � ��

Using next-state equation for FF-1 and FF-2, transition table is obtained as shown in
Fig. 9.9.

00 01 11 10Q1 Q2

X1 X2

00

01

11

10

00 00

11 11 11

10 10 10 10

10

11 11 01 01

1001

Q1 Q2
+ +

 Fig. 9.9 Transition table for the circuit of Fig. 9.8

The output function is

Y = X1 X2 Q1 Q2

Its flow table is shown in Fig. 9.10.

d, 0

c , 0

00 01 11 10

a

b

c

d

Q1 Q2

X1 X2

a , 0 a , 0

d , 0 d , 0 d , 0 d , 0

c , 0

b , 0 b , 0

c , 1 d, 0

c, 0 c, 0

b, 0

Q1 Q2
+ +

 Fig. 9.10 Flow table for the circuit of Fig. 9.8

334 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

From a flow table, transition table can be obtained by assigning binary values to the
states. From the transition table, logic equations can be obtained by constructing K-maps for
S and R inputs of every latch. For this, the excitation table of S-R latch will be used. Logic
circuit can then be designed using the logic equation for S, R inputs of every latch.

Example. Design logic circuit using S-R latches for the transition table of Fig. 9.4.

Solution. Since, there are two internal states Q1 and Q2, therefore, two S-R latches are
required for the design of logic circuit. Let the two latches be L1 and L2. The inputs and
outputs of these latches are given as

Latch Inputs Outputs

L1 S1, R1 Q1, ��

L2 S2, R2 Q2, ��

The excitation table of an S-R latch is given in Table 9.2. This is same as for S-R flip-
flop.

Table 9.2 Excitation table of S-R latch

Present state Next state Inputs

Q Q+ S R

0 0 0 ×

0 1 1 0

1 0 0 1

1 1 × 0

To determine S1 and R1 for different values of X1 X2, we make use of Q1 and ��
� values

for every square of transition table. For example, this square in the first row and first column

gives Q1 = 0 and ��
� = 0. This means, for the present state 0 the circuit gives next state as

0 for Q1. Corresponding to this we find the value of S1 and R1 using the Table 9.2, which are
S1 = 0 and R1 = X.

Thus the entry in the cell corresponding to X1 X2 = 00 and Q1 Q2 = 00 for K-map of S1
will be 0 and for K-map of R1 it will be X. Similarly, K-map entries are determined for S1
and R1.

Following similar procedure, K-maps for S2 and R2 are constructed. The K-maps are
given in Fig. 9.11.

From the K-map of Fig. 9.11, we obtain logic equations for S1, R1, S2, and R2.

S1 = � � � � �� � � � �+

R1 = � � � �� � � �+

S2 = � � �� � �

R2 = � �� �

The logic circuit is shown in Fig. 9.12.

ASYNCHRONOUS SEQUENTIAL LOGIC 335

00 01 11 10Q1Q2

X1X2

00

01

11

10

0 0 0

0

1

0

0

1 1

0× ×

×××0

() K-map for S1a

00 01 11 10Q1Q2

X1X2

00

01

11

10

× 0×

×

1

1

0

0

0

0

0

0

×

1

0

() K-map for R1b

00 01 11 10Q1Q2

X1X2

00

01

11

10

0 1 0 0

0

0 ×

×

×

×

0 0 0 0

() K-map for S2c

×

×

00 01 11 10Q1Q2

X1X2

00

01

11

10

0×

×

×

0

×

× ×

1

1 0

0 0

×

0

0

() K-map for R2d

×

Fig. 9.11

L2

S2

R2

R1

S1

L1

Q1

Q1

X1
X2
Q1

X1
X2

X1
X2
Q2

Q2

X1
X2

X1

X2

X1
X2

Q1

Q2

Fig. 9.12

336 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

9.3.6 Races and Cycles
A race condition exists in an asynchronous sequential circuit when more than one state

variable change value in response to a change in an input variable. This is caused because
of unequal propagation delays in the path of different secondary variables in any practical
electronic circuit. Consider a transition table shown in Fig. 9.13. When both the inputs X1

and X2 are 0 and the present state is Q1 Q2 = 00, the resulting next state � ��
�

�
� will have

��
� = 1 and ��

� = 1 simultaneously if the propagation delays in the paths of Q1 and Q2 are
equal.

00 01 11 10Q1 Q2

X1 X2

00

01

11

10

00

11 10 11

10 10

00

11

11

00

1111

11 01

0110

Q1 Q2
+ +

Fig. 9.13

Since Q1 and Q2 both are to change and in general the propagation delays in the paths
of Q1 and Q2 are not same, therefore, either Q1 or Q2 may change first instead of both
changing simultaneously. As a consequence of this the circuit will go to either state 01 or to
state 10.

If ��
� changes faster than ��

� , the next state will be 01, then 11 (first column, second

row) and then to the stable state �� (first column, third row) will be reached. On the other

hand, if ��
� changes faster than ��

� , the next-state will be 10, then 11 (first column, fourth
row) and then to the stable state (first column, third row) will be reached. In both the
situations, the circuit goes to the same final stable state �� . This situation, where a change
of more than one secondary variable is required is known as a race.

There are two types of races: noncritical race and critical race.

In the case of noncritical race, the final stable state in which the circuit goes does not
depend on the sequence in which the variables change. The race discussed above is a noncritical
race. In the case of critical race, the final stable state reached by the circuit depends on the
sequence in which the secondary variables change. Since the critical race results in different
stable states depending on the sequence in which the secondary states change, therefore, it
must be avoided.

Example. In the transition table of Fig. 9.13, consider the circuit in stable total state
1100. Will there be any race, if the input state changes to 01? If yes, find the type of race.

ASYNCHRONOUS SEQUENTIAL LOGIC 337

Solution. When the circuit is in stable total state, X1 X2 = 00. Now X2 changes to 1

while X1 = 0. From Fig. 9.13 we see that the required transition is to state 00. If ��
� and

��
� become 00 simultaneously, then the transition will be

�� → 00 → ��

These transitions are shown by solid arrows in Fig. 9.14.

00 01 11 10Q1 Q2

X1 X2

00

01

11

10

00

11

10

Q1 Q2
+ +

00

00

Fig. 9.14

If ��
� becomes 0 faster than ��

� , the circuit will go to the state 10 and then to �� , which
is a stable state. The transition is

�� → 10 → ��

On the other hand, if ��
� becomes 0 faster than ��

� , the transition will be

�� → 01 → 00 → ��

It is shown by dotted arrow in Fig. 9.13. Thus, we see that the circuit attains different
stable states �� or �� depending upon the sequence in which the secondary variables
change.

Therefore, the race condition exists in this circuit and it is critical race.
Races can be avoided by making a proper binary assignment to the state variables in a

flow table. The state variables must be assigned binary numbers in such a way so that only
one state variable can change at any one time when a state transition occurs in the flow table.
The state transition is directed through a unique sequence of unstable state variable change.
This is referred to as a cycle. This unique sequence must terminate in a stable state,
otherwise the circuit will go from one unstable state to another unstable state making the
entire circuit unstable.

9.3.7 Pulse-mode Circuits
In a pulse-mode asynchronous sequential circuit, an input pulse is permitted to occur

only when the circuit is in stable state and there is no pulse present on any other input.

338 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

When an input pulse arrives, it triggers the circuit and causes a transition from one stable
state to another stable state so as to enable the circuit to receive another input pulse. In this
mode of operation critical race can not occur. To keep the circuit stable between two pulses,
flip-flops whose outputs are levels, must be used as memory elements.

For the analysis of pulse-mode circuits, the model used for the fundamental-mode cir-
cuits is not valid since the circuit is stable when there are no inputs and the absence of a
pulse conveys no information. For this a model similar to the one used for synchronous
sequential circuits will be convenient to use.

In pulse-mode asynchronous circuits the number of columns in the next-state table is
equal to the number of input terminals.

Consider a pulse-mode circuit logic diagram shown in Fig. 9.15. In this circuit there are
four input variables X1, X2, X3, and X4, and Y is the output variable. It has two states Q1
and Q2.

S-R
FF-2

S-R
FF-1

Q1

Q1

S1

R1
X4

X3

X2

S2

R2Q1

X3

X4

X1

Q1
Q2

Q2

Q2

X4
Y

Fig. 9.15

The excitation equations are:

 �� � � �� � �

� � �� � �

 � � �� � �

� �� � � � �� � � � �

� � � � � �

� � � �

� � � � � �

� � � � � � � �

= + = +

= =

= =

= + = +

The output equation is: Y = � �� �

The next-state equations are obtained by using the excitation equations and the charac-
teristic equation of latch.

ASYNCHRONOUS SEQUENTIAL LOGIC 339

These are: ��
� = � �� � �+

= � � � �� � � �+ +
and � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � � �

�
�

� � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � � �

= +

= + +

= +

= + +

= + +

� � �

� � � �

� � � �

The transition table is constructed by evaluating the next-state and output for each
present state and input value using next-state equations and output equation. The transition
table is shown in Fig. 9.16.

Q1Q2

Input variables

X1

00

01

11

10

01, 0

X2 X3 X4

10, 0 10, 0 00, 1

01, 0 11, 0 10, 0 00, 0

00, 011, 011, 011, 0

10, 0 10, 0 10, 0 10, 0

Output
value

Next-state
valuePresent

State

Fig. 9.16

 It has four rows (one row for each combination of state variables) and four columns (one
column for each input variable). Since in pulse-mode circuits only one input variable is
permitted to be present at a time, therefore, the columns are for each input variable only and
not for the combinations of input variables.

Flow table can be constructed from the transition table and is shown in Fig. 9.17. Here,
S0, S1, S2, and S3 are the four state variables.

Q1Q2
X1

S , 01

X2 X3 X4

S , 03 S , 03 S , 10

S , 01 S , 02 S , 03 S , 00

S , 02 S , 02 S , 02 S , 00

S , 03 S , 03 S , 03 S , 10

S0

S1

S2

S3

Present
State

Input variables

 Fig. 9.17

340 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

From a flow table, a transition table can be constructed by assigning binary values to the
states. From a transition table next-state equations can be obtained and the logic diagram can
then be obtained.

9.4 ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN
Design of asynchronous sequential circuits is more difficult than that of synchronous

sequential circuits because of the timing problems involved in these circuits. Designing an
asynchronous sequential circuit requires obtaining logic diagram for the given design specifica-
tions. Usually the design problem is specified in the form of statements of the desired circuit
performance precisely specifying the circuit operation for every applicable input sequence.

9.4.1 Design Steps
1. Primitive flow table is obtained from the design specifications. When setting up a

primitive flow table it is not necessary to be concerned about adding states which
may ultimately turn out to be redundant. A sufficient number of states are to be
included to completely specify the circuit performance for every allowable input
sequence. Outputs are specified only for stable states.

2. Reduce the primitive flow table by eliminating the redundant states, which are
likely to be present. These redundant states are eliminated by merging the states.
Merger diagram is used for this purpose.

3. Binary numbers are assigned to the states in the reduced flow table. The binary
state assignment must be made to ensure that the circuit will be free of critical
races. The output values are to be chosen for the unstable states with unspecified
output entries. These must be chosen in such a way so that momentary false
outputs do not occur when the circuit switches from one stable state to another
stable state.

4. Transition table is obtained next.

5. From the transition table logic diagram is designed by using the combinational
design methods. The logic circuit may be a combinational circuit with feedback or
a circuit with S-R latches.

The above design steps is illustrated through an example.

Example. The output (Y) of an asynchronous sequential circuit must remain 0 as long
as one of its two inputs X1 is 0. While X1 = 1, the occurrence of first change in another input
X2, should give Y = 1 as long as X1 = 1 and becomes 0 where X1 returns to 0. Construct a
primitive flow table.

Solution. This circuit has two inputs X1, X2 and one output Y. For the construction of
flow table, the next-state and output are required to be obtained. The flow table is shown in
Fig. 9.18.

For X1 X2 = 00, let us take state a. When the circuit has X1 X2 = 00 the output is 0
(since X1 = 0) and the circuit is in stable state � . The next-state and output are shown in
the first column, first row of Fig. 9.18.Since only one input is allowed to change at a time,
therefore, the next input may be X1 X2 = 01 or 10.

If X1 X2 = 01, let us take another state b, correspondingly the second row of the flow
table corresponds to state b. when the inputs change from X1 X2 = 00 to 01, the circuit is

ASYNCHRONOUS SEQUENTIAL LOGIC 341

required to go to stable state � and output is 0 (since X1 = 0). Therefore, the entry in the
second column, first row will be b, 0 and in the second column, second row will be � , 0. The
output corresponding to unstable state b is taken as 0 so that no momentary false outputs occur
when the circuit switches between stable states. On the other hand if X1 X2 = 10, the circuit
is required to go to another stable state � with output 0. Therefore, the entries in the fourth
column, first row and fourth column, third row will be respectively c, 0 and � , 0.

00 01 11 10
X1 X2

a

b

c

d

e

f

a, 0

b

, 1fe, 1–, –

–, –

–, –

a, –

b, – , 1e f, 1

b, 0–, – f, –

–, –

c, 0–, –b, 0

a, 0

a, 0

, 0 d, 0

, 0ce, –

, 0d

Present-
state

Fig. 9.18 Flow table

Since, both the inputs cannot change simultaneously, therefore, from stable state � , the
circuit cannot go to any specific state corresponding to X1 X2 = 11 and accordingly the entry
in the third column, first row will be –, –. The dashes represent the unspecified state, output.

Now consider the stable state � . The inputs X1 X2 can change to 00 or 11.If X1 X2
= 00, the circuit will go to state a. Therefore, the entry in the first column, second row will
be a, 0. From this unstable state the circuit goes to stable state � . On the other hand if
X1 X2 = 11, then the circuit goes to a new state d. The output corresponding to X1 X2 = 11
will be 0 since, there is no change in X2, which is already 1. Therefore, the entry in the third
column, second row will be d, 0. The fourth row corresponds to state d, and the entry in the
third column, fourth row, will be � , 0. From � , the circuit is not required to go to any
specific state and therefore, the entry in the fourth column, second row will be –,–.

Similarly, now consider stable state � . The inputs can change to X1 X2 = 11 or 00. If
X1 X2 = 11, the circuit goes to a new stable state � and the output will be 1, since X2
changes from 0 to 1 while X1 = 1. The entry in the third column, third row will be c, –. Output
has to change from 0 to 1 from stable state � to stable state � , which may or may not
change to 1 for unstable e. The entry in the third column, fifth row will be � , 1. The entry
in the second column third row will be –, – and the entry in the first column, third row will
be a, 0 (for X1 X2 = 00).

In the same manner, we consider the stable � and obtain the entries f, – (fourth
column, fourth row); � , 1 (fourth column, sixth row); b, 0 (second column, fourth row) and
–, – (first column, fourth row).

342 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Similar procedure applied to � and � , yields the remaining entries of the flow table.

Since, every row in the flow table of Fig. 9.18 contains only one stable state, therefore,
this flow table is a primitive flow table.

9.4.2 Reduction of States
The necessity of reducing the number of states has been discussed in chapter 6 and the

equivalent states have been defined. When asynchronous sequential circuits are designed, the
design process starts from the construction of primitive flow table. A primitive flow table is
never completely specified. Some states and outputs are not specified in it as shown in Fig.
9.18 by dashes. Therefore, the concept of equivalent states cannot be used for reduction of
states. However, incompletely specified states can be combined to reduce the number of states
in the flow table. Two incompletely specified states can be combined if they are compatible.

Two states are compatible if and only if, for every possible input sequence both produce
the same output sequence whenever both outputs are specified and their next states are
compatible whenever they are specified. The unspecified outputs and states shown as dashes
in the flow table have no effect for compatible states.

Example 1. In the primitive flow table of Fig. 9.18, find whether the states a and b are
compatible or not. If compatible, find out the merged state.

Solution. The rows corresponding to the states a and b are shown in Fig. 9.19. Each
column of these two states is examined.

00 01 11 10

a

b a, 0 b, 0 d, 0 –, –

c, 0–, –b, 0a , 0

X X1 2

Fig. 9.19

Column-1. Both the rows have the same state a and the same output 0. a in first row
is stable state and in the second row is unstable state.

Since for the same input both the states a and b have the same specified next-state a
and the same specified output 0. Therefore, this input condition satisfies the requirements of
compatibility.

Column-2. The input condition X1 X2 = 01 satisfies the requirements of compatibility as
discussed for column-1.

Column-3. The first row has unspecified next-state and output and the second row has
specified state and output. The unspecified state and output may be assigned any desired state
and output and therefore, for this input condition also the requirements of compatibility are
satisfied.

Column-4. The requirements of compatibility are satisfied for the reasons same as
applicable to column-3.

Therefore, we conclude that since the next-states and the outputs for all the input
combinations are compatible for the two states a and b, the two states are compatible.The
merged state will be as shown in Fig. 9.20.

ASYNCHRONOUS SEQUENTIAL LOGIC 343

00 01 11 10

a , 0

X X1 2

b , 0 d, 0 c, 0a

Fig. 9.20

When the merged state entries are determined a circled entry and an uncircled entry
results in a circled entry, since the corresponding state must be stable as shown in Fig. 9.20.

Example 2. In the primitive flow table of Fig. 9.18 find whether the states a and e are
compatible or not. Examine their compatibility if the entries in the fourth column for the states
a and e have same output.

Solution. The partial flow table for states a and e of Fig. 9.18 is shown in Fig. 9.21.

00 01 11 10

a

e –, – b, – e , 1 f, 1

c, 0–, –b, 0a , 0

X X1 2

Fig. 9.21

From this we observe the following

Column-1 compatible

Column-2 compatible

Column-3 compatible

Column-4 not compatible, since the outputs are different.

Therefore, the states a and e are not compatible.

In case of same output in column-4, the outputs are said to be not conflicting and the
states a and e are compatible if and only if the states c and f are compatible. This is referred
to as c, f is implied by a, b or a, b implies c, f.

9.4.3 Merger Diagram
A merger diagram (or graph) is prepared for a primitive flow table to determine all the

possible compatible states (maximal compatible states) and from this a minimal collection of
compatibles covering all the states.

A merger graph is constructed following the steps outlined below:

• Each state is represented by a vertex, which means it consists of n vertices, each
of which corresponds to a state of the circuit for an n- state primitive flow table.
Each vertex is labelled with the state name.

• For each pair of compatible states an undirected arc is drawn between the vertices
of the two states. No arc is drawn for incompatible states.

• For compatible states implied by other states a broken arc is drawn between the
states and the implied pairs are entered in the broken space.

The flow table is required to be examined for all the possible pairs of states. All the pairs
are checked and the merger graph is obtained. Thus, we see that the merger graph displays
all possible pairs of compatible states and their implied pairs. Next, it is necessary to check
whether the incompatible pair (s) does not invalidate any other implied pair. If any implied

344 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

pair is invalidated it is neglected. All the remaining valid compatible pairs form a group of
maximal compatibles.

The maximal compatible set can be used to construct the reduced flow table by assigning
one row to each member of the group. However, the maximal compatibles do not necessarily
constitute the set of minimal compatibles. The set of minimal compatibles is a smaller
collection of compatibles that will satisfy the row merging.

The conditions that must be satisfied for row merging are:

• the set of chosen compatibles must cover all the states, and

• the set of chosen compatibles must be closed.

The condition of covering requires inclusion of all the states of the primitive flow graph
in the set of chosen compatibles. This condition only defines a lower bound on the number
of states in the minimal set. However, if none of their implied pairs are contained in the set,
the set is not sufficient and this is referred to as closed condition not being satisfied. There-
fore, condition of closed covering is essentially required for row merging.

9.5 ESSENTIAL HAZARDS
Similar to static and dynamic hazards in a combinational circuits, essential hazards occur

in sequential circuits. Essential hazard is a type of hazard that exists only in asynchronous
sequential circuits with two or more feedbacks. Essential hazard occurs normally in toggling
type circuits. It is an error generally caused by an excessive delay to a feedback variable in
response to an input change, leading to a transition to an improper state. For example, an
excessive delay through an inverter circuit in comparison to the delay associated with the
feedback path many cause essential hazard. Such hazards cannot be eliminated by adding
redundant gates as in static hazards. To avoid essential hazard, each feedback loop must be
designed with extra care to ensure that the delay in the feedback path is long enough
compared to the delay of other signals that originate from the input terminals.

Even though an asynchronous sequential circuit (network) is free of critical races and the
combinational part of the network is fee of static and dynamic hazards, timing problems due
to propagation delays may still cause the network to malfunction and go to the wrong state.
To better understand, consider for example the network of Fig. 9.22.

FF1

0 1 0 � �

y1 y1

S1R1

0 1 0 � �
0 1�

G1 G2

y2 y2
x

0 1�

0 1�
0 1�

x 1��

FF2

y2 y2

S2R2

0 1 0 � �

0 1 0 � �

G3 G4

y1
1��

1��
y1

0 1�

x
y y1 2

00

01

10

11 11

11

00

00

01

10

01

10

0 1
x

y y1 2

00

01

10

11 c

c

a

a

b

d

b

d

0 1

Characteristic equation
y (next) = S + R y = xy + (x + y)y
y (next) = S + R y = xy + (x + y) y

1 1 1 1 2 2 1

2 2 2 2 1 1 2

0 1�

x
Fig. 9.22 Network with essential hazards

ASYNCHRONOUS SEQUENTIAL LOGIC 345

There is no hazards in the combinational part of the network, and flow table inspection
shows that there are no critical races. If we start in state � and change x to 1, the network
should go to state � . Let consider the following possible sequence of events.

(i) x change 0 to 1.

(ii) Gate 2 (G2) output changes 0 to 1.

(iii) Flip-flop (FF1) output y1 changes 0 to 1.

(iv) G4 output changes 0 to 1.

(v) FF2 output changes 0 to 1.

(vi) Inverter output � changes 1 to 0.

(vii) G1 output changes 0 to 1, G2 output changes back to 0, and G4 output changes back
to 0.

(viii) Flip-flop output y1 changes back to 0.

Though the network should go to stage � when change x to 1 but the final state of the
network is � instead of � . The malfunction illustrated in example network of Fig. 9.22 is
referred to as an essential hazard. This came about because the delay in inverter was large
than the other delays in the network, so that part of the network having value x = 1 while
other part have value x = 0. The final result was that the network acted as if the input x
had changed three times instead of once so that the network went through the sequence of
states y1y2 = 00, 10, 11, 01. Essential hazards can be located by inspection of the flow table.
An essential hazard can be defined as follows:

A flow table has an essential hazard starting in stable total state � for input variable
xi if and only if the stable total state reached after one change in xi different froms the stable
total state reached after three changes in xi.

If an essential hazard exists in the flow table for total stable state � and input xi, then
due to some combination of propagation delays network go to the wrong state when xi is
changed starting in � on realization. This occurs because the change in xi reaches different
parts of the network at different times.

In order to test a flow table for essential hazards it is necessary to test each stable total
for each possible input change using the definition of essential hazard given.

Essential hazards can be eliminated by adding delays to the network. For the network
shown in Fig. 9.22, the essential hazard can be eliminated by adding a sufficiently large delay
to the output of FF1, because he change in x output of FF1 does.

We can summarize the design of an asynchronous network is free of timing problems as:

(i) Make a state assignment which is free of critical races.

(ii) Design the combinational part of the network so that it is free of hazards (if require
by adding redundant gates).

(iii) Add delays in the feedback paths for the state variables as required to eliminate
essential hazards.

9.6 HAZARD-FREE REALIZATION USING S-R FLIP-FLOPS
The design of hazard-free asynchronous networks can be simplified using S-R flip-flops.

We have already seen in chapter 6 that a momentary 1 applied to the S or R input can set
or reset the flip-flop, however a momentary 0 applied to S or R will have no effect on the flip-

346 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

flop state. Since a 0-hazard can produce a momentary false 1, the networks realizing S and R
must be free of 0-hazards but the S and R networks may contain 1-hazards. A minimum two-
level sum of products expression is free of 0-hazards but it may contain 1-hazards. For this
reason, the minimum sum of products can be used as a starting point for realizing the S-R flip-
flop input equations. Simple factoring or transformation which do not introduce 0-hazards can
be applied to the minimum sum-of-products expressions, in the process of realizing S and R.

A typical network structure with the S-R flip-flop driven by 2-level AND-OR networks
constructed from cross-coupled NOR gates is shown in Fig. 9.23(a). The Fig. 9.23(b) shows
equivalent network structure with multiple input NOR gates. The two structure are equiva-
lent since in both cases.

Q = + +� ��� � � � ����

� = � ��������� � � �+ +

R

S Q

Q

S2

S1

R2

R1

() S-R flip-flop driven by 2-level AND-OR networka

Q

Q

S2

S1

R2

R1

() Equivalent network structureb

Fig. 9.23 Gate structures for S-K flop-flip realization of flow table

ASYNCHRONOUS SEQUENTIAL LOGIC 347

Even if an asynchronous network is realized using S-R flip-flops and S and R networks
are free of 0-hazards, essential hazards may still be present. Such essential hazards may be
eliminated as discussed previously by adding delays in the feedback paths for the state
variables.

An alternative method for eliminating essential hazards involves changing the gate
structure of the network. This method can be applied only if wiring delays are negligible and
all the gate delays are concentrated at the gate outputs.

As illustrated in previous section, the following sequence of events is needed for an
essential hazard to cause a network of maltfunction.

(i) An input variable changes.

(ii) A state variable changes in response to the input variable change.

(iii) The effect of the state variable change propagates through the network and initi-
ates another state variable change before.

(iv) The original input variable change has propagated through the entire network.

Therefore, in an asynchronous network with S-R flip-flops, we can eliminate the essential
hazards by arranging the gate structure so that the effect of any input change will propagate
to all flip-flop inputs before any state variable changes can propagate back to the flip-flop
inputs. For example, the essential hazard of Fig. 9.22 can be eliminated by replacing the R2
and S2 networks with the network of Fig. 9.24.

y1 x y1

R2 S2

Fig. 9.24

Assuming that wiring delays are negligible that the gate delay is concentrated at the
gate output any change in x will propagate to R2 and S2 before flip-flop 1 output y1 can
change state and this change in y1 can propagate to R2 and S2. This eliminates the essential
hazard.

In the Fig. 9.23 (b), each AND gate can have inputs of the form shown in Fig. 9.25 (a),
where x’s are external inputs to the circuit, and the y’s are feedback from flip-flop outputs.
If there are essential hazards in the flow table, then the circuit could malfunction due to the
inverter delays. By replacing the AND gate with the NOR-AND network of Fig. 9.25 (b), the
inverters on the x variables are eliminated. Therefore by replacing all of the AND gate in
Fig. 9.23 with the NOR-AND combinations as indicated in Fig. 9.25, all of the essential
hazards will be eliminated.

348 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

() Replacement for ()b a

S (or R)i i

xn
xq
y�1

y�j
yk
yp

x1
xm

xq

xn

x1

xm

yy
yj

y�k
y�p

S (or R)i i

() AND gate with general inputsa

Fig. 9.25 A gate transformation for elimination of essential hazards

9.7 SOLVED EXAMPLES
Example 1. Construct merger diagram for the primitive flow table of Fig. 9.18. Determine

maximal compatibles and the minimal set of compatibles.

Solution: For construction of merger diagram, every row of the primitive flow table is
checked with every other row to determine compatibility of states.

Consider row-1 (state a)

a, b are compatible

a, c are compatible

a, d are compatible if c, f are compatible

a, e are compatible if c, f are compatible

a, f are compatible if c, f are compatible

row-2 (state b)

b, c are compatible if d, e are compatible

b, d are compatible

b, e are not compatible (outputs are conflicting)

b, f are not compatible (outputs are conflicting)

row-3 (state c)

c, d are compatible if e, d and c, f are compatible

ASYNCHRONOUS SEQUENTIAL LOGIC 349

c, e are not compatible (outputs are conflicting)

c, f are not compatible (outputs are conflicting)

row-4 (state d)

d, e are not compatible (outputs are conflicting)

d, f are not compatible (outputs are conflicting)

row-5 (state e)

e, f are compatible

The primitive flow table has six states therefore, there are six vertices in the merger
diagram as shown in Fig. 9.26.

a

f

e

d

c

b

Fig. 9.26 Merger diagram

Solid arcs are drawn between (a, b), (a, c), (b, d) and (f, e) vertices. Corresponding

to these states being compatibles. Since (c, f) and (d, e) are not compatible, therefore,
there are no implied pairs available.

From the merger diagram, we get the maximal compatibles:

(a, b), (a, c), (b, d), (e, f)

Since (a, b) is covered by (a, c) and (b, d), therefore, the minimal set is (a, c), (b, d),
(e, f)

Example 2. Determine the reduced flow table of Fig. 9.19.

Solution: From the merger diagram, we have obtained three pairs of compatible states:
These compatibles are merged and are represented by

a, c : S0

b, d : S1

e, f : S2

The reduced flow table is shown in Fig.
9.27.

00 01 11 10

X1X2

S0, 0 S , 01

S1

S2

S0 S , –2

S , –2S , 00

S , –0 S , –1

S , 01S , 01

S , 12 S , 12

S , 00

Present-state

 Fig. 9.27 Reduced flow table

350 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Example 3. Assign binary states to the reduced flow table of Fig. 9.27. Avoid critical race.

Solution: Let us assign the following binary states to S0, S1, and S2 for the reduced flow
table of Fig. 9.27.

S0 → 00

S1 → 01

S2 → 11

The transition table will be as shown in Fig. 9.28.

00 01 11 10Q1Q2

X1X2

00

01

11

10

00 , 0

01, –00, –

00, 0 11, –

11, –01, 0 00 , 0

01 , 001 , 0

11 , 0 11 , 0

Fig. 9.28 Transition table

In the transition table of Fig. 9.28, we observe that race condition occurs in the following
cases:

(i) From stable state 00 to unstable state 11 when X1 X2 changes from 10 to 11.

(ii) From stable state 11 to unstable state 00 when X1 X2 changes from 10 to 00.

To avoid critical race, one unstable state 10 is added with the entries 00, –; –, –; 11,
–; –, – and the entries in third column, first row is changed from 11, – to 10, – and in first
column, third row from 00, – to 10, –.

The modified transition table is given in Fig. 9.29.

00 01 11 10Q1Q2

X1X2

00

01

11

10 00, – –, – 11, – –, –

01, –10, –

00, 0 11. –

10, –01, 0

11 , 111 , 1

01 , 0 01 , 0

00 , 000 , 0

Fig. 9.29 Modified transition table

ASYNCHRONOUS SEQUENTIAL LOGIC 351

Example 4. Design logic circuit with feedback for the transition table of Fig. 9.29.

Solution: The K-maps for � ��
�

�
�� , and Y determined from the transition table are given

in Fig. 9.30.

From the K-maps, we obtain,

��
� = � � � � � � � � � � �� � � � � � � � � � �+ + +

��
� = � � � � � �� � � � � �+ +
Y = Q1

Logic circuit using gates can be obtained from the above logic equations.

Thus, we see that the design steps outlined above can be used to design an asynchronous
sequential circuit.

Fig. 9.30 K-Maps for (a) Q1
+ (b) Q2

+ (c) Y

Example 5. In the state transition table of Fig. 9.13, if X1 X2 = 10 and the circuit is in
stable state �� , find the cycle when X2 is changed to 1 while X1 remaining 1.

Solution: The circuit is in stable state �� (fourth column, second row). When X2
changes to 1, the circuit will go to the state 11 (third column, second row), then to state 10

352 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

(third column, third row) and finally to the stable state �� (third column, fourth row). Thus,
the cycle is

�� → 11 → 10 → ��

9.8 EXERCISE
1. (a) Explain the difference between asynchronous and synchronous sequential

circuits.

(b) Define fundamental mode of operation.

(c) Define pulse mode of operation.

(d) Explain the difference between stable and unstable states.

(e) What is the difference between internal state and total state.

2. Describe the design procedure for asynchronous sequential circuits.

3. What do you mean by critical and non-critical races? How can they be avoided?

4. Describe cycles in asynchronous sequential circuits.

5. Design a JK flip-flop asynchronous sequential circuit that has two inputs and single
output. The circuit is required to give an output equal to 1 if and only if the same
input variable changes two or more times consecutively.

6. Design an asynchronous circuit that has two inputs and single output .The circuit
is required to give an output whenever the input sequence 00, 10, 11 and 01 are
received but only in that order.

7. (a) Design an asynchronous binary counter with one pulse input and two
outputs, capable of counting from zero to three. When the circuit is pulsed
after the count has reached three, it should return to zero. The output should
provide continuosly the count modulo 4.

(b) Repeat the problem for level inputs and outputs.

9. Find all of the essential hazards in the following flow table. How can table essential
hazard which occurs starting in b be eliminated.

X1X2

Q1Q2 00 01 11 10

a 00 � b � d

b 01 a � c –

c 11 – d � d

d 10 a � a �

10.0 INTRODUCTION
In this book we have been concerned with the logic design of switching circuits constructed

of gates and/or bilateral devices. There also exists entirely different type of switching device
called the threshold element. Concerning switching function, by the use of threshold logic we
get many important theoretical results.

The circuits implemented with threshold elements have usually considerable reduction
in the number of gates, inputs and components as well as in the size of the final circuit than
the corresponding circuit implemented with conventional gate.

Then why we are not using threshold element in place of conventional gate? The answer
of this question is that presently threshold elements are not easy to manufacture as
conventional gates and also threshold elements are not as fast to operate and therefore are
of very limited usefulness.

Other limitation of threshold logic is its sensitivity to variations in circuit parameters. Also
while the input-output relations of circuits constructed of conventional gates can be specified
by switching algebra, different algebraic means must be developed for threshold circuits.

10.1 THE THRESHOLD ELEMENT OR T GATE
The symbol of a threshold element is shown in Fig. 10.1. A threshold element or T gate

has n two-valued inputs say x1, x2, ..., xn and a single two-valued output y. The T-gates
internal parameters are threshold T and weights w1, w2, ..., wn. For each input variable xi
there is corresponding associated weight wi.

The � �� �

�

�

=
∑

�

 is called the weighted sum of the element.

The output y is a function of input variables x1, x2, ..., xn and depends on weighted sum of
the element. If the value of threshold T is less than weighted sum, then output will be 0
otherwise output will be 1. Therefore, the input-output relation of a T-gate is defined as follows:

y = 1 if and only if � �� �

�

�

=
∑ ≥

�

� ...(10.1)

= 0 if and only if � �� �

�

�

=
∑ <

�

�

353

C
H

A
P

T
E

R 10
THRESHOLD LOGIC

354 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The values of the threshold T and the weights � � �� � � ����� �= � � may be real, finite,
positive or negative numbers.

T y

w1

w2

wn

x1

x2

xn

Fig. 10.1 Symbol of a threshold element

Example. The input-output of the threshold element is shown in Fig. 10.2. Find the
switching function implemented by threshold element.

Solution.

– y

–2

x1

x2

x3

–1

1

1
2

Fig. 10.2 A threshold element

The input-output relation of the threshold element shown in Fig. 10.2 is given in
Table 10.1.

Table 10.1 Input-output relation of the T-gate shown in Fig. 10.2.

Input variables Weighted sum Output

x1 x2 x3 –2x1 – x2 + x3 y

0 0 0 0 1

0 0 1 1 1

0 1 0 –1 0

0 1 1 0 1

1 0 0 –2 0

1 0 1 –1 0

1 1 0 –3 0

1 1 1 –2 0

THRESHOLD LOGIC 355

The weighted sum is computed in the centre column for every input combination. For

weighted sum greater than or equal to − �

�
 output is 1 and 0 for weighted sum less than − �

�
.

We can find the switching function by using K-map.

x1
x x2 3

x x2 3 x x2 3 x x2 3 x x2 3

x1

x1

0 1 3 2

4 5 7 6

1 1 1

y = ��� � �� � 	
 � 	� � � � � � �= Σ
y = � � � �� � � 	+

Therefore, this T-gate realizes the switching function

y = � � � �� � � 	+ .

10.2 PHYSICAL REALIZATION OF THRESHOLD GATE
A threshold element can be realized in many ways. Since input associated weights may

be positive or negative numbers. In this section, we have shown two methods : one which
only provides positive weights (resistor-transistor T-gate) and other which provides both positive
and negative weights (magnetic core T-gate).

The resistor-transistor T-gate is shown in Fig. 10.3.

R1

R2

Rn

(V) x11

(V) x22

(V) xnn

R0
RL

Y

–V0 +VCC

Fig. 10.3 Resistor-transistor threshold element.

The resistors R1, R2, ..., Rn forms a linear summer which can compute weighted sum
of input voltages � � � ���� �� � ��� � , provided values of resistors are not same. Whenever inputs
are at logic 0 level, transistor is in cut-off and output goes to high (1 level) : When one or
more inputs are logic 1 then the weighted sum of these input voltages are applied at the base
of transistor. If this sum is greater than the threshold value determined by R0 then the
transistor goes to saturation and output goes low. The threshold in the above circuit is
determined by resistor R0 and the voltage source V0. Because all resistors have positive
values, this gate is capable of providing only positive weights.

356 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The magnetic core T-gate is shown in Fig. 10.4.

I1 I2 In

�1 �2 �n

It

�t ThresholdReset

Output

Fig. 10.4 Magnetic core T-gate

The magnetic core T-gate provides both negative and positive weights. For the n-input
T-gate, a magnetic core of n + 3 windings are used. The presence or absence of current in
each input winding determined the value of each input variable xi and the corresponding
weights wi is a function of the number of turns li. The threshold T is determined by the turns
lt, the constant current It and their direction. The value of the output is determined by the
magnetization state of the core. Depending upon the direction of the windings, both positive
and negative weights can be obtained. Initially core is in negative saturation.

To determine the direction of saturation which depends on the value of the sum;

� �� � � �

�

�

� �+
=
∑

�

(10.2)

a sufficiently large reset pulse is applied to drive the core to negative saturation. If at the
time of reset pulse applied, the core is negatively saturated no pulse will appear on the output
winding and if the core is positively saturated at that time, a pulse will appear on the output
winding. The presence or absence of a pulse on the output winding corresponds respectively,
to output values 1 or 0.

10.3 CAPABILITIES OF THRESHOLD GATE
A threshold element can be considered a generalization of the conventional gates, because

any of them can be realized by a single threshold element. The threshold elements are more
powerful and capable than conventional diode and transistor gates because of single T-gates
ability to realize a larger class of functions than is realizable by any one conventional gate.
The following example shows the NOR gate implementation by single T-gate.

Example 1. A two-input NOR gate can be realized by a single threshold element with

weights –1, –1 and threshold T = − �

�
 as shown in Fig. 10.5.

THRESHOLD LOGIC 357

– y

–1

1
2

–1

Fig. 10.5 A T-gate realization of NOR operation.

Since NOR is a functionally complete operation any switching function can be realized
by threshold element alone. The input-output relation of the threshold element shown in Fig.
10.5 is given in Table 10.2.

Table 10.2 Input-Output relation of the gate shown in Fig. 10.5

Input variables Weighted sum Output

x1 x2 –x1 – x2 y

0 0 0 1

0 1 –1 0

1 0 –1 0

1 1 –2 0

Though large class of switching functions can be realized by single threshold elements.
But not every switching function is realizable by only one threshold element. The following
example support the above statement.

Example 2. Is it possible to implement EX-OR operation with a single threshold
element.

Solution. For two input EX-OR operation

F(x1, x2) = � � � �� � � �+

That is, output is 1 for dissimilar inputs.

If w1, and w2 are associated weights

�

�

�

�

≥
≥
UVW

�

�
(A)

and w1 + w2 < T (B)

The inequalities (A) and (B) have conflicting requirements so no threshold value can
satisfy them. Therefore, EX-OR cannot be realized by a single threshold element.

A switching function which can be realized by a single T-gate is known as threshold
function.

To check whether a switching function ��� � ��� �� � ���� � is a threshold function or not, we
have to derive 2n linear, simultaneous inequalities for which weighted sum must exceed or
equal to threshold T if F = 1 and for which weighted sum must be less than T if F = 0. If

358 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

solution exists to above inequalities it provides the values for threshold and weights. If, no
solution exists, F is not a threshold function.

Example 3. Check whether F(x1, x2) = Σ(0, 1, 2) is threshold function or not.

Solution. The truth table and the corresponding inequalities are given in Table 10.3.

Table 10.3 Truth table for F = ΣΣΣΣΣ(0, 1, 2) with linear inequalities

Inputs Output Inequality

x1 x2 F

0 0 1 0 ≥ T

0 1 1 w2 ≥ T

1 0 1 w1 ≥ T

1 1 0 w1 + w2 < T

From the inequality corresponds to combination 0 we deduce that T must be negative.
And the inequality corresponds to combination 1 shows that both w1 and w2 must also
negative. For smallest integer value, we obtain

w1 = –1

w2 = –1

T = −��
�

Since all the inequalities are satisfied, hence F is a threshold function.

Example 4. Show that a function having inputs � 	 � 	

 	 � 	

 	 �� � � � is realizable by a

single T-gate having weights � 	 � 	

 	 � 	

	 �� � � � and threshold T, after complementing one
of the inputs, say xj, the same function can be realized by a single T-gate with weights

−� � � �� � � � ���� � � ���� � and threshold T – wj.

Solution. We can specify a threshold element by a weight threshold vector V = {T; w1,
w2, ..., wn} and its input variables.

Let the function ��� �� 	 � 	

	 � 	

	 �� �� � be realizable by single T-gate V1 = {T; w1, w2,
..., wj, ..,. wn}. Then from the definition of T-gate we can write

if � � � �� � � �

� �

+
≠
∑ ≥ T then F1 = 1 ...(10.3)

and < T then F1 = 0

When input xj is complemented we assume that same function F1 can be realized by a
single T-gate V2 = {T – wj; w1, w2, ..., wj, ..,. wn} for the inputs x1, x2, ..., �� � ..., xn.

Then this T-gate must satisfy the following inequalities:

if –� � � �� � � �

� �

+
≠
∑ ≥ T – wj then F2 = 1 ...(10.4)

and < T – wj then F2 = 0

where F2 is the function realized by the T-gate V2.

THRESHOLD LOGIC 359

To prove that F1 and F2 are identical functions, suppose xj = 0 so that �� = �� Hence,
equations (10.3) and (10.4) becomes identical and if suppose xj = 1 so that �� =
� Again
equations (10.3) and (10.4) becomes identical.

Since both F1 and F2 having identical values for each input combination therefore they
are identical functions.

Note : By an appropriate selection of complemented and uncomplemented input variables
a function can be realized by a single T-gate having desired sign distribution. Therefore, it
can be realized by only positive weights.

In this section, we have tried to find out the answer of questions: Is the threshold gate
a universal gate? Can a single T-gate realize any switching function?

The answer of first question is yes while the answer to the second question is no. As we
have seen in example 10.3 that EXCLUSIVE OR function cannot be realized by a single T-
gate.

In the subsequent section the condition that a given function must satisfy so that it can
be realized by a single T-gate is found.

10.4 PROPERTIES OF THRESHOLD FUNCTIONS

(1) Isobaric Functions
Two threshold functions are said to be isobaric if they have different threshold values but

the same set of weights.

(2) Unate Functions
A function is called a unate function, if the minimal sum of product (SOP) form contains

each variables in complemented or uncomplemented form only. If all the variables appear in
complemented form then the function is called a negative unate or negative function and if
all the variables appear in uncomplemented form then the function is called a positive function.
If a variable xi appears only in complemented (uncomplemented) form, then the function is
said to be negative (positive) unate in variable xi.

An unate function can be represented by a cube. An n-cube contains 2n vertices, each of
which corresponds to a minterm of a n-variable function. Vertices corresponding to minterms
for which function having value 1 are known as true vertices and for those function value 0
are called false vertices. To represent the function a line is drawn between every pair of
vertices which differ in just one variable.

Example 1. Check whether function

F = � � �

is unate function.

Solution. From definition we know that function F = � � � is positive in A and
negative in C but not unate in B.

360 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Example 2. Find the three-cube representation of function � � � � � �� � � �+ implemented
in example 10.1.

Solution. To represent the function, first draw a line between every pair of vertices
which differs in just one variable as shown in Fig. 10.6.

(0, 1, 0)

(1, 1, 0)

(0, 0, 0)

(0, 0, 1)

(1, 0, 1)(0, 1, 1)

(1, 1, 1)

(1, 0, 0)

Fig. 10.6 A three-cube representation of � � � � � �� � � 	+

The heavier lines connecting the two pairs of the true vertices [(0, 0, 0) and (0, 0, 1) and
(0, 0, 1) and (0, 1, 1)] represent the subcubes � �� � and � �� 	�

(3) Linear Separability
Let � � � ��� � � ���� �� � be a threshold function represented in n-cube form, whose true

vertices can be separated from the false ones by a hyperplane represented by linear equation

� � � � � �� �� � � �+ + +��� = T

The output of a T-gate is dependent on whether the weighted sum is less than a certain
constant (threshold value) or not.

Now, since f = 0 when

� � � � � �� �� � � �+ + +��� < T

and f = 1 when

� � � � � �� �� � � �+ + +��� ≥ T

i.e., hyperplane separates the true vertices from the false ones.

Owing to this linear separability of true and false vertices, the threshold functions are
called linearly separable function. Since all threshold functions are linearly separable, therefore
can be realized by a single T-gate.

Note: Unateness is a necessary condition for linear separability.

THRESHOLD LOGIC 361

10.5 SYNTHESIS OF THRESHOLD FUNCTIONS
The synthesis of threshold function utilizes the linear separability property, which

determines whether or not their exists a hyperplane which separates the true vertices from
the false ones. The synthesis of threshold function involved following steps:

(I) Test for unateners by minimal expression of the function.

(II) If unate, convert it into positive function in all its variables.

(III) Find the minimal true and maximal false vertices of positive function obtained in
Step 2.

(IV) Determine linear separability of positive function and if it is, find an appropriate set
of weights and threshold.

(V) Convert this weight-threshold vector to one which corresponds to the original
function.

Example. Determine whether the function

F(A, B, C, D) = +�	
� 	
�

is threshold function, and if it is, find a weight-threshold vector.

Solution. Step 1: Test for unateness by minimal expression of the function

F(A, B, C, D) = ��� ��+

AB
CD

CD

1 1

1

CD CD CD

AB

AB

AB

AB

F = �� ��+

This function is unate.

Step 2: Convert it into positive function F2

F2 = ABC + BCD

Step 3: Minimal true vertices (L) and maximal false vertices (U) of F2. Minimal true
vertices are (1, 1, 1, 0) and (0, 1, 1, 1). The maximal false vertices are found by determining
all false vertices with two variables whose value is 0, and so on. Therefore, the maximal false
vertices are (1, 1, 0, 1) and (1, 0, 1, 1) and (0, 1, 1, 0).

Step 4: To check linear separability, we have to solve LU inequalities, corresponding to
the L minimal true and U maximal false vertices. For each pair of vertices A and B

��� �

�

�

=
∑

�

> ��� �

�

�

=
∑

�

362 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

where A = � � ��� �� � ����l q = minimal true vertices

B = � � ��� �� � ����l q = maximal false vertices

Therefore, for L = (1, 1, 1, 0) and (0, 1, 1, 1)

U = (1, 1, 0, 1), (1, 0, 1, 1) and (0, 1, 1, 0)

we get six inequalities as follows:

w1 + w2 + w3 > w1 + w2 + w4

w1 + w2 + w3 > w1 + w3 + w4

w1 + w2 + w3 > w2 + w3

w2 + w3 + w4 > w1 + w2 + w4

w2 + w3 + w4 > w1 + w3 + w4

w2 + w3 + w4 > w2 + w3

Since F2 is a positive function, then if it is linearly separable the separating hyperplane
will have positive co-efficients.

Solving the system of inequalities derive above, we get

� �

� �

�

	 �

� �

�

>
>
>

and

� �

� �

�

	 �

� �

�

>
>
>

Let w1 = w4 = 1

and w2 = w3 = 2

By substituting these values to any of the inequalities we find that T must be smaller

than 5 but larger than 4. Selecting T =
�

�
 the weight-threshold vector for F2

V2 =
�

�
� �� �� �� � �
RST

UVW
Step 5: To convert the weight-threshold vector corresponds to the original function F,

result of example is used, where for every input xj which is complemented in the original
function, wj must be changed to –wj and T to T – wj. In this case, inputs x3 = C and
x4 = D are complemented in F; thus, in the new weight-threshold vector V, the weights are

1, 2, –2 and –1, and the threshold is
�

�
� �

	

�
− − = , so

V =
	

�
� � � �� � � �− −RST

UVW

THRESHOLD LOGIC 363

F

1

3
2

–1

2

–2

A

B

C

D

Fig. 10.7

10.6 MULTI-GATE SYNTHESIS
So far we have been concerned mainly with the switching functions realizable with single

T-gate. But how any arbitrary switching function can be realized using threshold gates? The
general synthesis procedure for non-series parallel or multiple-output networks are not yet
available. These problems are, however, solved for the particular case of networks specified
by means of symmetric functions. One approach to synthesise any arbitrary switching function
is to develop a procedure for the decomposition of non-threshold functions into two or more
factors, each of which will be a threshold function.

A T-gate realization of any arbitrary switching function can be accomplished by selecting
a minimal number of admissible patterns (A pattern of 1 cells which can be realized by a
single T-gate). Such that each 1 cell of the map is covered by at least one admissible pattern.

10.7 LIMITATIONS OF T-GATE
The input-output relations of circuits constructed of conventional gates specified by

switching algebra but till date no such algebraic means are developed for T-gate.

Other limitation of threshold logic is its sensitivity to variations in circuit parameters.
Because of the variations in circuit parameters, the weighted sum may deviates from its
designed value and cause a circuit malfunction with a large number of inputs. As we have
seen in the physical realization of T-gate with resistor-transistor that threshold value depends
on the resistance and supply voltage. Since resistance value may change up to 15-20 percent
of their nominal value and supply as well input voltage may also vary therefore there is
restriction on the threshold value T and on the maximum allowable number of inputs.

Another limitation is the lack of effective synthesis procedures.

10.8 EXERCISE
1. Show that the symmetric function F(A, B, C) is not linearly separable.
2. Show a threshold-logic realization of a Full adder requiring only two T-gates.
3. Realize F(x1, x2, x3, x4) = Σ(3, 5, 7, 10, 12, 14, 15).

Using (a) AND-OR realization.
(b) T-gate realization.

4. A switching function F(x1, x2, ..., xn) is unate if and only if it is not a tautology and the above
partial ordering exists, so that for every pair of vertices (a1, a2, ..., an) and (b1, b2, ..., bn),
if (a1, a2, ..., an) is a true vertex and (b1, b2, ..., bn) ≥ (a1, a2, ..., an) then (b1, b2, ... bn) is also
a true vertex of F.

5. Realize y = Σ(1, 2, 3, 6, 7) using T-gate.

364 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

364

11.0 INTRODUCTION
Finite state machines are a powerful tool for designing sequential circuits, but they are

lacking in that they do not explicitly represent the algorithms that compute the transition or
output functions, nor is timing information explicitly represented. We can recast the idea of
a state machine to include a representation of the algorithms. The result is an algorithmic
state machine, or ASM. “The ASM chart separates the conceptual phase of a design from the
actual circuit implementation.” An algorithmic state machine diagram is similar to a flowchart
but with some differences. Square boxes represent the states, diamonds represent decisions,
and ovals represent outputs. States can also have outputs, and the outputs associated with
a state are listed in the state box. State boxes are labelled with the state name and possibly
with a binary code for the state. The basic unit of an ASM is the ASM block. An ASM block
contains a single state box, a single entry path, and one or more exit paths to other ASM
blocks. Algorithmic state machines capture the timing of state transitions as well.

11.1 DESIGN OF DIGITAL SYSTEM
In the earlier chapters, we have presented the analysis and design of various types of

Digital System for specified task. A close look on all such systems reveal that these systems
can be viewed as collection of two subsystems:

(i) The Data Processing or manipulating subsystem which include the operation such
as shifting, adding, counting, dividing etc.

(ii) The control subsystem or simply control. This subsystem has to initiate, superwise
and sequence the operation in data-processing unit.

Usually design of data processor is a fair and simple design. But design of control logic
with available resources is a complex and challenging part, perhaps because of timing relations
between the event. And in this chapter we are majority concerned with design of control.

The control subsystem is a sequential circuit whose internal states dictate the control
command to sequence the operations in data processing unit. The digital circuit used as
control subsystem is responsible to generate a time sequence of control signals that initiates
operation in data processor, and to determine the next state of control subsystem itself. The
task of data processing and control sequence are specified by means of a hardware algorithm.

C
H

A
P

T
E

R 11
ALGORITHMIC STATE MACHINE

ALGORITHMIC STATE MACHINE 365

An algorithm is a collection of produces that tells how to obtain the solution. A flow chart
is a simple way to represent the sequence of procedures and decision paths for algorithm.

A hardware algorithm is a procedure to implement the problem with the available
hardware or resource. A flowchart for hardware algorithm translates the word statements to
to an information of diagram, that enumerates the sequence of operations along with the
necessary condition for their execution.

A special flowchart, developed specifically to define the “Digital Hardware Algorithm” is
called as an Algorithmic State Machine (ASM) chart. In fact, a sequential circuit is alternately
called as state machine and forms the basic structure of a digital system. A conventional flow
chart describes the sequence of procedural steps and decision paths for an algorithm without
concern for their timing relationship. The ASM chart describes the sequence of events as well
as the timing relationship between the states of sequential controllers and the events that
occur while going from one state to next state. The ASM chart is specifically adapted to
accurately specify the control sequence and data processing in digital systems, while considering
the constraints of available hardware.

11.2 THE ELEMENTS AND STRUCTURE OF THE ASM CHART
An ASM chart is composed of four elements. These are the “state box”, the “decision box”,

the “conditional output box” and “edges”.

State Boxes
State boxes describe a state of the ASM. In general an ASM is a sequential system. The

state box represents the condition of the system. The symbol for a state box is as follows:

Entrance point

Optional state
number

State name

Register operation
or operation name

or outputs

Exit Point

R
Begin

S1 001
1

Fig. 11.1 (a) State box Fig. 11.1 (b) Example of state box

The state box has exactly one entrance point and one exit point. The state box also has
a name and is often assigned a number for clarity. Inside the state box we place the names
of the system outputs that must be asserted while the system is in that state. We can also
place variable assignments in the state box, in order to “remember” the fact that the system
has been in that state. This is useful in program design.

Note: Sequential systems are systems with memory; their output depend on their input
as well as their history. The historical information that the system stores is called a ‘state’.
Combinational systems are the opposite, having no memory. Combinational systems output
depends only on present inputs.

366 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Decision Boxes
Decision boxes are used to show the examination of a variable and the outcomes of that

examination. In this model, the outcome of a decision is always either true or false. This
means that there is always exactly one input to a decision box and exactly two exits from the
box. The exit points are always labelled “true” or “false” for clarity. When input condition is
assigned a binary value, the two exit paths are labelled 1 and 0. 1 in place of ‘True’ and 0
in place of ‘False’. The condition which is being examined is written inside the decision box.
The symbol for a decision box is shown here:

True

Exit point if condition

False

Exit point if condition

Entry point

Boolean condition to
be examined

Fig. 11.2 Decision Box

Note that the decision box does not imply a system state. When a decision box is
executed the decision is made and the system proceeds immediately to the next item in the
ASM chart.

Conditional Output Boxes
Conditional output boxes are used to show outputs which are asserted by the system “on

the way” from one state to another. The symbol for the conditional output box is shown here
in Fig. 11.3(A).

Register operation or
outputs to be asserted

Entry point

Exit point

01S1

S0 00

00

R1 1

Initial state

1 Z

X

Fig. 11.3 (a) Conditional box Fig. 11.3 (b) Use of conditional box.

There is always one entry and one exit point from a conditional output box. Inside the box
we write the name of the signal that must be asserted by the system as it passes from one state
to another. Input path to conditional box must come from an exit path of decision box.

Conditional output boxes do not imply a system state. We can put variable assignments
in the state box. Fig. 11.3(b) shows an example using conditional box. The first one in diagram
is initial state (Labled S0) system which attains certain conditions fulfilled before starting the
actual process. The control then checks the input X. If X = 0, then control generates the Z
output signal and go to state S1 otherwise it moves to next state without generating Z.
R1 ← 1 in state box S1 is a register operation that loads R1 by 1.

ALGORITHMIC STATE MACHINE 367

Edges are used to connect other ASM chart elements together. They indicate the flow
of control within the system. The symbol for an edge is as follows:

↑ ↓ → ←
Note that the edge must always indicate which direction is being taken, by using one or

more arrow heads.

11.2.1 ASM Block
An ASM block is a structure that contains one state box and all decision boxes and

conditional boxes connected to its exit path spanning just before another state box. An ASM
block has only one entry path but number of exit paths represented by the structure of
decision boxes. Fig. 11.4 shows an ASM block, in ASM chart by dashed lines around it.

X

Y

1

0 1

S0 000
R
Start

1 0

R2 0
R3 1

0

S1 001 S2 010

Valid

An ASM block

Fig. 11.4 Example of ASM Block-Structure enclosed by dashed line represent an ASM block

Each ASM block is an ASM chart represents the state of system during one clock pulse. The
operations specified by the state box, conditional boxes, and decision boxes are executed during
a common clock pulse while the system is in S0 state. The same clock pulse is also responsible
to move the controller to one of the next states, S1 or S2 determined by binary status of X and
Y. A state box without any decision or conditional boxes constitutes a simple block.

11.2.2 Register Operation
A digital system consists of one or more registers for data storage. Thus, operation to

be performed on data is actually performed on the register that stores the data. A register
is a general designation which includes shift registers, counters, storage registers, and single
Flip-Flops. A single Flip-flop is identified as 1-bit register. A register is designated by use of
one or more capital letters such as A, B, RA, RB, R1, R2. In practice, most convenient
designation is letter R along with numbers such R1, R2, ... Rn.

368 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Register operations can be increment, decrement, shift, rotate, addition, cleaning, copying,
data transfer etc. The data transfer to a register from another register or from the result of
mathematical operations etc. are shown (or symbolized) by directed arrow whose head is
towards target register and tale is towards source register. Fig. 11.5 summarizes the symbolic
notations for some of register operations.

Symbolic Initial Initial Value Value of Description
Notation Value of of Source Target of Operation
of Operation Target Register Register

Register after
Operation

A ← B A = 01010 B = 00000 A = 00000 Copy the content of register B
into register A

R1 ← 0 R1 = 11111 – R1 = 00000 Clear register R1

A ← A + B A = 01010 B = 00101 A = 01111 Add the contents of register B
to register A and put result in
A.

R ← R – 1 R = 01101 – R = 01100 Decrement register R by 1.

R ← R + 1 R = 00101 – R = 00110 Increment register R by 1.

“Shift Left A” A = 10111 – A = 01110 Shift content of A to left by
1-bit

“Rotate A = 10111 – A = 11011 Rotate content of A to right by
 Right A” 1-bit

R ← 1 R = 01010 – R = 11111 Set content R to 1

Fig. 11.5 Symbolic representation or register operation

Assume 5-bit register to understand the operations. Note that shift and rotate operation
are not same. Shift left means MSB ← MSB-1, MSB-1 ← MSB-2, ..., LSB + 1 ← LSB,
LSB ← 0. If rotate right operation then MSB ← LSB, MSB-1 ← MSB, ... LSB ← LSB + 1.
It is clear that in shift operation loose MSB if left-shift or LSB if right-shift because as above
explained MSB was overwritten by content of MSB-1, and prior to this value of MSB was not
saved. And that’s why a0 is inserted at LSB. In rotate operation, we don’t loose the status
of bits. If we rotate left then status of MSB is transferred to LSB and then it is overwritten
by the value of MSB-1.

Equipped with this many knowledge and understanding we are able to draw and understand
the simple ASM charts and with analysis and synthesis we can figure out the similarity of
ASM charts with that of state diagram.

In the next section (art 11.3), we present some simple examples to give you a feel of ASM
chart and its representation.

11.2.3 Example ASM Charts
Example 1. 1-Bit Half Adder: The half adder take the two data bits if START input

is activated otherwise it remains in initial state. The data bits are read into register R1 and
R2 and sum and carry bits are maintained in register R3 and R4, respectively ASM chart for
this task is shown into Fig. 11.6.

ALGORITHMIC STATE MACHINE 369

S0 00

CARRY

Initial state

Start

R4

R3

SUM

0

1

0

1

1

S1 01

0

R Input bit A1��

R Input bit B2��

R R EX-OR R 3 1 2�

R R AND R4 1 2�

Fig. 11.6 ASM chart for 1-bit half adder.

370 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

By observing the ASM chart of Fig. 11.6 we see that there are three state boxes which
contributes to three ASM blocks. And we know that the state box and conditional blocks are
executed by one common clock pulse corresponding to the state defined by state box in the
particular ASM block.

Example 2. MOD-5 Counter: We present counter having one input X and one output Z.
Counter will have five states, state 0 (i.e., S0) to state 4 (i.e., S4) and it moves to next state
only and only if input X = 1 at the time of arrival of clock pulse. If X = 0 at this time counter
does not move to next state and maintains its current state. Also when in state S4 then
X = 1 at clock pulse moves the system to next state S0 i.e., to initial state so that counting
can be restarted from 000. The output Z produces a pulse when X = 1 at 5 clock pulses or when
state changes from S4 to S0.

Initial state

So 000

1
Z

×

×

S3 011

0

1S4 100

1

0

S2 1 010

×

S1

0
×

001

×

0

0

Fig. 11.7 ASM chart for MOD-5 counter

Note that in the ASM chart shown in Fig. 11.7 state boxes are blank and does not specify
any operation. But the blocks corresponding to these states contain decision boxes which
means that only operation to be done in these states are to test the states of input.

Now let us consider the synthesis and we wish to use D flip-flop. The 3D-Flip-Flops
together are used to assign the 3-bit binary name to states. We know that for D flip-flops
excitation input Di should be same as next state variable Yi. By simply observing the assigned
state on ASM chart of Fig. 11.7, we carry out the task.

Let the three outputs of flip-flops are Y2Y1Y0 i.e., the three bit binary name for state.
(1) First finding the changes in bit Y0 in ASM chart. When present state is 000 or 010

then the next value of Y0 has to become 1. Thus

D0 = Y0 = � ��� �� � ��� 	�
�Σ Σφ
Similarly, for Y1 and Y2.

(2) The next value of Y1 has to become 1 only for the present states 001 and 010. So

D1 = Y1 = � ��� �� � ��� 	�
�Σ Σφ

ALGORITHMIC STATE MACHINE 371

(3) Similarly, next value of Y2 has to become 1 only for the present state 011. So

D2 = Y2 = � ��� � ��� 	�
�Σ Σφ
(4) Similarly, next value of Z has to become 1 only and only for present state 100. So

Z = � �� � ��� 	�
�Σ Σφ

Note that state 5, 6, 7 i.e., 101, 110, 111 never occurs and that’s why these three states
are written Σφ��� 	�
� .

Thus, the synthesis equations can be summarized as

D0 = Y0 = �� ��� �� � ��� 	�
�Σ Σφ

D1 = Y1 = �� ��� �� � ��� 	�
�Σ Σφ
D2 = Y2 = �� ��� � ��� 	�
�Σ Σφ

and Z = �� �� � ��� 	�
�Σ Σφ

Here input X is ANDed with all the expressions for the excitations. In this system, input
X is used to enable the counter. Thus, excitation equations can be given as–

D0 = Y0 = �� � � �� � �� � � � � �+

D1 = Y1 = �� � � � � � �� � � � � �+

D2 = Y2 = �� � �� � �

and Z = �� � �� � �

Where state S0 is represented by � � �� � �
 as its name assigned was 000. In fact if value

of state value is 0 then it is represented by ��
 and if it is 1 then use Yi.

Similarly, the states are represented for S1 to S4.

Example 3. Sequence Detector: We now consider a sequence detector to detect “0101”
and allowing the overlapping. This example is chosen to illustrate the similarity between state
diagram. If we have already drawn a state diagram then drawing the ASM chart is a very easy
job. The state diagram to detect 0101 is shown in Fig. 11.8.

1/1

0/0

1/0

S0

S11/0

1/0

0/0

0/0

S2

0/0
S3

Fig. 11.8 State diagram of 0101 sequence detector with overlapping

372 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Number marked with segments connecting two states is value of input and output and
written as Input/output. If its 1/0 means Input-1 then Output is 0, while in this state.

It is evident from the state diagram that there are four states S0, S1, S2, S3. So, 2-bit
binary code can be associated to these states to identify the particular state. Thus we use two
D flip-flops to assign binary number Y1Y0 to the states. As earlier indicated use of D flip-flop
makes the excitation table same as transition table because for D flip-flop Di = Yi. In fact we
carry out these exercise after drawing ASM chart, but here we did it earlier to reflect the
similarity between ASM chart and state graph as major difference between the two is indication
of timing relation in the drawing. Below is the ASM chart i.e., Fig. 11.9 for the problem.

Z

0

11S3

1

1

00S0

S1
0

1
S2

01

×

×

×

0

1

x

10

0

Fig. 11.9 ASM chart for 0101 sequence detector

Note that, as in earlier examples, here also X is input through which the sequence is
applied to the system. Z is output which goes high when the intended sequence is detected.
Note the similarity between the state diagram and ASM chart. A close inspection of two
graphs, shows that for every state of state diagram, there exist one ASM blocks and there
is one state box per ASM block in the ASM chart. Thus, there are four ASM blocks in Fig.
11.9 each of which contains a decision box and last one contains a conditional box also in

ALGORITHMIC STATE MACHINE 373

addition to state box. We again assert the fact that all the operations owing to an ASM block
are to be completed in the same clock period. We now consider synthesis to find out the
equations for excitations.

Here also we use observation (as was done in example 2) to determine that when next
state variables Y0 and Y1 become 1. Thus

D0 = Y0 = � ��� ��Σ

∴ D0 = Y0 = �� � � � �� � � �+

as the S0 state = 00 = � �� �

S2 state = 10 = � �� �

If input X = 0 make next state to comes then input = � and if input X = 1 causes the
next state then input = X.

In equation for D0,
� ��� � shows that next state variable Y0 = 1 when X = 0 and present

state is S0 (i.e., 00). Similarly, �� �� �
 means next state variable Y0 = 1 if the input X = 0 while

in state S2 (i.e., 10). See the ASM chart to verify the statements.

Similarly, D1 = Y1 = �� � �� �� � � �+

and Z = XY1Y0

11.3 ASM TIMING CONSIDERATIONS
The timing of all the registers and flip-flops is controlled by a master clock generator. The

clock pulses are equally applied to the elements (i.e., registers, flip-flops) of both data processing
and control subsystems. The input signals are synchronized with the clock as normally they
happen to be the output of some other circuit utilizing the same clock. Thus the inputs
change the state during an edge transition of clock. In the similar way, the outputs, that are
a function of present state and synchronous inputs, will also be synchronous.

We re-insert that major difference between a conventional flow chart and ASM chart is
in defining and interpreting the timing relation among the various operations. Let us consider
the ASM chart shown in Fig. 11.4. If it would be a conventional flow chart, then the listed
operations within the state, decision and conditional boxes are executed sequentially i.e., one
after another in time sequence. Alternately saying, at one clock pulse only one of the boxes
will be executed, where the box may be a state box or a decision box or a conditional box.
Thus, a total denial of timing relation among the various activities. In contrast to it, an entire
ASM block is treated as one unit. All the activities specified within the block must happen
in synchronism with the transition of positive edge of the clock, while the system changes
from current state to next state. Here it is assumed that all the flip-flops are positive edge
triggered. For illustration purpose consider the ASM chart shown in Fig. 11.4 and Fig. 11.10
shows the transition of control logic between the states.

Next state
(S or S)1 2

Present state
(S)0

Positive transition
of pulse

Clock

Fig. 11.10 Transition between states

374 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

In order to understand the state transition at the positive edge of clock refer the
Figs. 11.4 and 11.10 simultaneously along with the following discussion.

The arrival of first positive transition of clock, transfers the control subsystem into S0
state. The activities listed in various boxes of ASM block, corresponding to S0 state can now
be executed, as soon as the positive edge of second-clock pulse arrives. At the same time
depending upon values of inputs X and Y the control is transferred to next state which may
be either state S1 or state S2. Referring to the ASM block indicated by dashed line in
Fig. 11.4 we can list out operation that occur simultaneously when the positive edge of second
clock pulse appears. They are–

Recall that system is S0 state before second-clock pulse

(1) Register R1 is cleared.

(2) If input X is 1, the output signal VALID is generated and the control enters in S2
state.

(3) If input X is 0, then the control tests the input Y.

(4) If input Y is 0 register R3 is set to one. If input Y is 1 register R2 is cleared. In
either the case next state will be S1 state.

Observe the ASM chart closely (in Fig. 11.4), and we find that next state is decided by
the status of input X only. If X = 1 then next is S2 state and when X = 0 then weather input
Y = 0 or 1 the next state will always be S1. Also note that the operation in the data processing
subsect and change in state of control subsystem occur at the same time, during the positive
transition of same clock pulse. We now consider a design example to demonstrate timing
relation between the components of ASM chart.

Example 1. Design a digital system having one 4-bit binary counter ‘C’ whose internal
bits are labelled C4 C3 C2 C1 with C4 MSB and C1 as LSB. It has two flip-flops named ‘X’ and
‘Y’. A start signal incrementing the counter ‘C’ by 1 on arrival of next clock pulse and continues
to increment until the operation stops. Given that the counter bits C3 and C4 determines the
sequence of operation. The system must satisfy following–

(1) Initiate the operation when start signals = 1 by clearing counter ‘C’ and flip-flop “Y”,
i.e., C = 0000 and Y = 0.

(2) If counter bit C3 = 0, it causes E to be cleared to 0 i.e., E = 0 and the
operation proceeds.

(3) If counter bit C3 = 1, E is set to 1 i.e., E = 1 and

(a) if C4 = 0, count proceeds.

(b) if C4 = 1, F is set to 1 i.e., F = 1 on next clock pulse and system stops counting.

Solution. ASM chart for the given problem is shown in Fig. 11.11. A close inspection
reveals that:

When, no operation, system is in initial state S0, and keep waiting for start signals ‘S’.

When S = 1, counter C = 0000 and Y = 0 and simultaneously control goes to S1 state.
It means clearing of counter ‘C’ and flip-flop ‘Y’ occurs during S0 state.

The counter is incremented by 1 during state S1, on the arrival of every clock pulse.
During each clock pulse simultaneously with increment during same transition of clock, one
of the three possibilities is tested to determine the next state:

(1) Either X is cleared and control stays at S1 (C3 = 0).

ALGORITHMIC STATE MACHINE 375

or
(2) X is set (X = 1) and control maintains S1 state (A4A3 = 10).

or
(3) X is set and control advanced to state S2 (A4A3 = 11).

When in S2 state flip-flop ‘Y’ is set to 1 and control move back to its initial state S0. The
ASM chart consists of three blocks, one external input S, and two status inputs S4 and S3.

× 0��

S

Inital state

S0

0

1

× 1��

1

0

C3
0

S2

1

C4

C C+1��

Y 1��

Y 0�

S1

C 0�

Fig. 11.11 ASM chart for example 11.4

Example 2. Design a digital system for weight computation in a given binary word.

Solution. The weight of a binary number is defined as the number of 1’s contained in
binary representation. To solve the problem, let the digital system have

1. R – A register where binary work is stored.

2. W – A register that counts number of 1’s in binary number stored in R.

3. F – A flip-flop.

The operation of the system is to shift a single bit of R into F. Then check the output
of the F. If it is 1 increment count in W by 1. If it is 0 no increment in W. The moment all
the bits are shifted and tested operation stops and W contains the weight of the given word.

376 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

The ASM chart for this problem is shown in Fig. 11.12. Note that the system have 3
inputs S, Z and F. Z is used to sense weather all the bits in register R are 0 or not. Z = 1
indicates that register R contains all zeros, and the operation must stop.

Initially machine is in state S0 and remains in state S0 until the switch S (i.e., start
signal) is made 1. If S = 1 then in S0 state, the clock pulse causes, input word to be loaded
into R, counter W to have all 1’s and machine transferred to state S1.

In state S1 a clock pulse causes two works simultaneously. First it increments W by 1.
If W is incremented for the first time, then the count in W becomes all 0’s as initially it was
all 1’s second it tests Z. If Z = 0 machine goes to state S2. If Z = 1 machine goes to state
S0 and count in W is weight of the binary word.

In state S2, a bit of register R is shifted into flip-flop F, and machine goes to state S3.

S0 00

Initial state

SO

1

1

S1 01

R Input��

W All 1S��

W W + 1�

Z

Shift R into F

S2 10

S3 11

F

1

0

Fig. 11.12 ASM chart for weight computation

ALGORITHMIC STATE MACHINE 377

In state S3, shifted bit in F is tested. If F = 0 the machine goes to state S2 to shift next
bit into F. If F = 1 it goes to state S1 to increment to count in W.

11.4 DATA PROCESSING UNIT
Once the ASM chart is prepared, the system (or machine) can be designed. The design

is splitted in two parts.

a. Data Processing Unit

b. Control Unit

The data processing unit contains the element that performs the operations like increment
the count, shift a bit etc.

The control unit is the subsystem that is responsible to move the machine from one state
to another, according to the conditions specified by ASM chart.

In this section we are concerned with the design of data processing unit only.

Example. Design Data processing unit for binary weight computation, discussed in
example 11.5.

Solution. Proposed data processing unit is shown in Fig. 11.13. The control sub system
has 3 inputs S, Z, F as discussed in example 11.5. It has four control signals C0, C1, C2, C3
corresponding to states S0, S1, S2, S3, respectively (refer to ASM chart shown in Fig. 11.12).
We advise the readers to go through example 11.5 again.

Next shown in figure is a shift register R. Serial input ‘0’ is a data input. Each time data
in R is shifted left this input inserts a 0 at LSB. A HIGH on SHIFT LEFT input shifts the
data present in R to left by 1 bit and loads a serial 0 at LSB. A HIGH on LOAD INPUT DATA
loads the input data into R. This is the binary word whose weight is to be calculated. This
word is loaded as parallel data into R.

A NOR gate is used to determine weather all the bits of R are 0 or not. All the bits of
R are brought to the input of NOR. As soon as all the bits of R become 0 output of NOR goes
high. If any of the bit of R is 1 output of NOR remains LOW. Output of NOR is feeded as
input Z to controls, where it is checked for 0 or 1.

A flip-flop F is connected at MSB of R. This flip-flop is used to collect each shifted bit from
register R. Every time R receives shift left command, its MSB is shifted out and is received
in flip-flop F. The output of flip-flop is feeded to controls as input F, where it is checked for
1 or 0.

Last in figure is counter W which is yet another register acting as counter. A HIGH
on LOAD INPUT loads all 1s into W. A HIGH on INCREMENT increments the count in
W by 1.

Initially the system is in state S0 (refer ASM chart of Fig. 11.12. along with Fig. 11.13).
As soon as START = 1, C0 is activated. This causes LOAD INPUT DATA signals of both R
and W to go HIGH. Thus, binary word is loaded into R and initial count is loaded into W. At
the same time the machine moves to state S1.

In state S1 signal C1 is activated. This causes INCREMENT signal of W to go HIGH and
consequently the count in W is incremented by 1. When it is incremented for the first time,
All 1s become all 0’s. At the same time input Z is tested by controls. If Z = 1 control goes
back to state S0. If Z = 0 control goes to state S2.

378 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

W

CP
Input Data

Load input data
Shift left

Serial input ‘0’

SHIFT REGISTER ‘R’F
Q D

Flip
flop
F CP

Z = 1 if R = 0

F

Z

S C0

C1

C2

C3

Start

Increment

Counter W

CP
Input all 1s

Control

*‘CP’-Clock pulse

Load input data

Fig. 11.13 Data processing unit for binary weight computation

In state S2, the signal C2 is activated. The C2 causes shift left of R to go high and enables
the flip-flop F. Thus, the content of R is shifted to left by 1-bit. Hence, MSB of R is shifted
out and is collected by F and at the same time a 0 is inserted at the LSB through serial input.
Now the machine moves on to state S3.

In state S3 the output of F is tested by control subsystem. If F = 1 machine should go
to state S1 i.e., C1 to be activated next. If F = 0 machine should go to state S2 i.e., C2 to be
next. Since all these activities are internal to control subsystem, C3 is not connected to any
element of data processing unit. In fact C3 is used to activate the signals C1 or C2 and is
processed internally by control unit.

11.5 CONTROL DESIGN
As stated earlier the job of the control subsystem is to move the machine from one state

to other state according to inputs given to it. In general variables defined by the “decision
boxes” in an ASM chart are treated as inputs to the control subsystem.

ALGORITHMIC STATE MACHINE 379

There are many methods to obtain a control subsystem according to the ASM charts.
Here we consider only two methods.

(i) Multiplexer controls

(ii) PLA controls

11.5.1 Multiplexer Control
In this approach, the multiplexers is used to realize the control subsystem. The number

of multiplexers depend upon the number of states in ASM chart. For example, if there are
four-states then we need 2-bit binary number to specify these states uniquely. So, we take
two multiplexers, one for each bit of representation. In general if ‘n’ is number of multiplexers
then 2n > No. of states.

The type of multiplexer also depends upon the number of states. If there are four states
in ASM chart then the multiplexer should be a 4 × 1 multiplexer. Alternately

Number of MUX inputs > No. of states

In general design the output of multiplexers denotes the PRESENT STATE variable as
these outputs reflect current status of control unit. The inputs to multiplexer represents the
NEXT STATE variable. It is because if these inputs are changed output of multiplexers may
change and thus we say that the state is changed.

To being with we consider our example of binary weight computation illustrated in
example 11.5 and 11.6. We urge the readers to go through these two examples carefully before
proceeding further.

Example. Design the control system for binary weight computation, by using multiplexers.

Solution. The ASM chart for binary weight computation is drawn in Fig. 11.12. Referring
to the chart we find that there are 4 states. So,

2n > 4

or n > 2

So, we take 2 multiplexers (n = 2) MUX 1 and MUX 0. Since there are 4 states we select
4 input multiplexers i.e., 4 × 1 multiplexers.

After selecting the multiplexers next step is to draw state table, as shown in Fig. 11.14(a).
The first 3 columns of the tables shows present states, next state and the inputs that causes
the next state. Last column of the table is multiplexer input. As earlier stated multiplexer
inputs are next-state variables. Thus, entries in this columns are made by making observations
on inputs and next state. For example, if present state is So i.e., multiplexer output Y1 = 0
and Y0 = 0, then status of switch S decides the next state. If S = 0 the next state is S0 i.e.,
Y1 = 0 and Y0 = 0. If S = 1 the next state is S1 i.e., Y1 = 0 and Y0 = 1. Hence when S = 0
Y0 = 0 and when S = 1 Y0 = 1 so we say Y0 = S. Since Y1 = 0 always the first entry in MUX
inputs column is 0 S. Consequently input I0 of MUX1 must be connected to 0 and input I0
of MUX0 must be connected to S. The same is shown in Fig. 11.14(b). Readers are advised
to verify all the rows of state table in similar way.

380 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

Present State Inputs Next State MUX Inputs

Y1 Y0 S Z F Y1 Y0 D1 = Y1 D0 = Y0

MUX1 MUX0

S0 0 0 0 × × 0 0 0 S

1 × × 0 1

S1 × 1 × 0 0

0 1 × 0 × 1 0 � 0

S2 1 0 × × × 1 1 1 1

S3 1 1 × × 0 1 0

× × 1 0 1 � F

(a) State Table

2 to 4
Line
Decoder

C0

C1

C2

C3
D0 Y0

CP

D1 Y1

CPMUX 1

I0

I1

I2

I3

0

Z

1

F

I0

I1

I2

I3

S

0

1

F

MUX 0

S1 S0

(b) Logic Diagram

Fig. 11.14 Control subsystem for binary weight computation

Fig. 11.14(b) shows the complete control design for weight computation. The outputs of
multiplexers are feeded to D flip-flops, whose outputs Y1 and Y0 are brought back to select
lines S0 and S1 of multiplexers. Y1 and Y0 are decoded further by using 2 to 4 line decoder
to generate the control signals C0, C1, C2, C3 corresponding to states S0, S1, S2, S3, respectively.

To understand the operation let us consider that control is in state S0 so Y1 = 0 and Y0
= 0 i.e., S1 = S0 = 0. Since S1S2 = 00, input I0 of both the multiplexers are selected. As long
as S = 0, both Y1 = Y0 = 0 and machine remains in state S0. As soon as S = 1 output of MUX0

ALGORITHMIC STATE MACHINE 381

becomes 1 and consequently Y1 = 0 and Y0 = 1. Thus signal C1 is activated and select inputs
become S1 = 0 and S0 = 1. Hence inputs I1 of both multiplexers selected. Note that by
activation of C1 state S1 has arrived. At the input I1 of MUX1, � is connected whose value
is responsible to make Y1 = 0, Y0 = 0 or Y1 =1, Y0 = 0. Thus input Z is tested in state 1,
which was to be done in S1 according to the ASM chart shown in Fig. 11.12. Likewise the
complete operation can be verified.

11.5.2 PLA CONTROL
Use of PLA to realize, control subsystem makes the system more compact and efficient.

PLAs have internal And-OR array i.e., the outputs of PLA represent sum of product. Thus,
overall strategy is to prepare an SOP equation for each bit of state representation. For
example, if 4-states are there we need two bits of representation. Thus, we need two SOP
equations. After getting the SOP equations next step is to prepare PLA program table. Such
a table is an input-output table according to which PLAs are programmed.

Example. Design a control system for binary weight computation, by using the PLA.

Solution. We advise the readers to go through the ASM chart given in Fig. 11.12 and
multiplexer control shown in Fig. 11.14.

We now obtain two SOP equations for next state variables Y1 and Y0 according to
state table given in Fig. 11.14(a). Let C0, C1, C2, C3 are signals corresponding to states S0,
S1, S2, S3.

Y1 = � � � � � � � �� � � � � �+ +

or Y1 = � � � � �� � �+ +

as (Y1 Y0 = 0 1 means C1 and Y1 Y0 = 11 means C3)

Similarly,

Y0 = � � � � � � � �� � � � � �+ +

= C0S + C2 + C3F

The PLA program table and PLA control block is shown in Fig. 11.15. Let us examine
the PLA program table. Note that Y1Y0 in the input side of table represents the present state
and Y1Y0 in the output side represents the next state. Further all entries at the input side
is made for product terms and at the output side entries are results of sum of products.

First four rows in the program table are simply showing the values of Y1Y0 and
corresponding state to be excited. For example, if present state is Y1 = 0 and Y0 = 0 then
it is state S0 and signal C0 is activated. This is shown in first row. At the output side Y1Y0
shows next state. Now observe the third row, which shows that machine is in state S2 so C2
is activated. But according to the ASM chart shown in Fig. 11.12, if the machine is in state
S2 it goes to state S3 without testing any input. Hence, at the output side of table we marked
Y1 = 1 and Y0 = 1. Note that Y1 and Y0 on the output side are filled up according to the two
SOP equations obtained in the beginning. Infact the first four rows are used to show what
will be the control signal to be activated when machine is in a state.

382 FOUNDATION OF SWITCHING THEORY AND LOGIC DESIGN

 Product Inputs Outputs

Terms Y1 Y0 S Z F Y1 Y0 C0 C1 C2 C3

C0 = � �� �
0 0 1 0 0 0

C1 = � �� �
0 1 0 1 0 0

C2 = � �� �
1 0 1 1 0 0 1 0

C3 = Y1Y0 1 1 0 0 0 1

C1� = � � �� �
0 1 0 1 0 0 1 0 0

C3� = Y1Y0� 1 1 0 1 0 0 0 0 1

C0S = � � �� �
0 0 1 0 1 1 0 0 0

C3F = Y1Y0F 1 1 1 0 1 0 0 0 1

(a) PLA Program Table

Q D1

CP

Q D0

CP

Y = D0 0Y0

Y1
Y = D1 1

PLA

F

Z

S

C3

C2

C1

C0

(b) Logic Diagram

Fig. 11.15 Control subsystem for weight computation using PLA

ALGORITHMIC STATE MACHINE 383

The rest of the four rows in PLA programs table shows the input to be tested when
machine is in a state and what should be the next state if testing is true. Consider the 7th

row having product terms entry C0S = � � �� �
. This tests the input S when machine is in state

S0. At the input side Y1 = Y0 = 0 to show state S0 and entry S = 1 is status of input S. At
the output side in this row C0 = 1 as machine is in state S0. Next Y1 = 0 and Y0 = 1 at the
output side indicates that since input S = 1, the machine must go to state S1 at next clock
pulse.

11.6 EXERCISE
1. Draw the ASM chart for a binary multiplier.

2. A binary stream is arriving serially. Stream is such that LSB arrives first and MSB arrives
last. System requirement is such that the system must output the 2’s complement of each
incomming bit serially. Draw the ASM chart and design control subsystem and data processing
subsystem for this system.

3. Draw the ASM chart to compare two 4-bits binary data.

4. Draw the ASM chart for 1-bit full adder.

5. Draw the ASM chart for 2-bit binary counter having one enable input.

6. Design a synchronous state machine to generate following sequence of states.

7 3

5

1

7. Draw the ASM chart and state diagram for the circuit shown

Input

Clock

Q

QD Output

Q

QD

8. Draw the ASM chart and state diagram for decade counter.

9. Draw the ASM chart and state diagram to convert two-digit hexadecimal number into
packed BCD number.

10. Draw the ASM chart and state diagram for 1-bit full subtractor.

1. A.K. Singh, Digital Logic Circuits, New Age International Publishers, Delhi, 2007.

2. A.K. Singh, Manish Tiwari, Digital Principles, Function of Circuit Design and Application,
New Age International Publishers, Delhi, 2006.

3. H. Taub, D. Schilling, Digital Integrated Electronics, McGraw-Hill, Koga Kusha, 1997.

4. A.S. Sedra, K.C. Smith, Microelectronics Circuits, 4th ed, Oxford University Press, New York,
1998.

5. J. Millman, H. Taub, Pulse Digital and Switching Waveforms, McGraw-Hill, Singapore.

6. M.M. Mano, Digital Design, 2nd ed, Prentice-Hall of India, 1996.

7. R.L. Tokheim, Digital Electronics: Principles and Applications, 6th ed, Tata McGraw-Hill,
New Delhi 2004.

8. J. Millman, C.C Halkias, Integrated Electronics: Analog and Digital Circuits and Systems,
Tata McGraw-Hill, New Delhi, 1994.

9. A.P. Malvino, D.P. Leach, Digital Principles and Applications, 4th ed, Tata McGraw-Hill, New
Delhi, 1991.

10. R.P. Jain, Modern Digital Electronics, Tata McGraw-Hill, New Delhi, 1992.

11. Virendra Kumar, Digital Technology; Principles and Practice, New Age International
Publishers, Delhi.

12. J.P. Hayes, Computer Architecture and Organization, 2nd ed, McGraw-Hill, Singapore, 1988.

13. V.C. Hamacher, Z.C. Vranesic, S.G. Zaky, Computer Organization, 4th ed, McGraw-Hill,
1996.

14. Gopalan, Introduction to Digital Microelectronics Circuits, Tata McGraw-Hill, 1998.

15. P.K. Lala, Digital System: Design using Programmable Logic Devices, BS Publication,
Hyderabad, 2003.

16. J.M. Rabey, Digital Intergrated Circuits: A Design Perspective.

17. Charles H. Roth, Jr., Fundamentals of Logic Design, 4th ed, Jaico Publishing House, 2003.

18. ZVI Kohavi, Switching and Finite Automata Theroy, 12th ed, Tata McGraw-Hill, 1978.

REFERENCES

385

INDEX

Decade counter 281

(r – 1)’s complement 23, 24

1’s and 2’s complement 15

1’s complement 15, 16, 17, 18, 20, 21, 23, 33, 55

10’s complement 22, 23, 28, 29, 53, 54, 55, 56

2’s complement 15, 16, 17, 18, 19, 20, 21, 22,
23, 55, 56

4-bit magnitude comparator 172, 173

9’s and 10’s complement 22, 28, 53, 55

9’s complement 23, 33, 53, 54, 55, 56

A
Absorption 106

Absorption Law 62

Adders 137, 139, 163, 165, 170, 179

Address decoding 199

Algorithmic state machine (ASM) 364, 365

Algorithmic state machine (ASM) chart 365

Alphanumeric codes 30, 46

Altera 198, 201, 202

AND gate 65, 73, 74, 78, 79, 80, 84, 86, 88,
89, 90, 91, 92, 93, 94, 98, 99, 100, 102, 103

Antifuse 203, 204, 205

Arithmatic circuits 137

ASCII Alphanumeric code 46

ASM 364

ASM block 367

ASM timing 373

Associative law 61

Asynchronous 261, 267, 268, 275, 278, 281,
283, 286, 288, 309, 322, 323, 324, 325, 326,
327, 330, 332, 336, 337, 338, 340, 342, 344,
345, 347, 351, 352

Asynchronous counter 267, 268, 275, 278,
281, 283, 310

Asynchronous counter circuits 267

Asynchronous flip-flops 215

Asynchronous sequential circuit 207, 267, 312

Axiomatic systems 59

B
Basic theorems 61

BCD 4, 27, 28, 29, 31, 32, 33, 267, 310

BCD adder 168, 169, 170

BCD addition 28, 29

BCD codes 31, 32, 33

BCD subtraction 28, 29

Bi-directional 263, 266

Bi-directional shift registers (Universal shift
Register 265

Binary 1, 2, 3, 8, 9, 10, 13, 14, 15, 19, 27, 28, 30,
31, 32, 34, 35, 44, 45, 48, 49, 51, 55, 56

Binary addition 13

Binary arithmetic 13

Binary coded decimal 4, 27, 32

Binary codes decimal codes (BCD codes) 31

Binary division 15

Binary formats 3

Binary logic 57, 61

Binary multiplication 14

386 DIGITAL LOGIC CIRCUITS

Binary numbering system 1

Binary subtraction 13, 140

Binary to gray code converter 143, 144

Binary to gray conversion 34

Bistable 207, 208

Bistable multivibrator 208

Bit 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 19, 20, 21, 22, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 55

Bit-time 215

Block codes 39, 40, 44

Boolean algebra 106

Boolean functions 63, 65, 66, 69, 91, 99

Buffer 76, 77, 86

Burst error detection 38, 39

Bytes 1, 3, 5, 6, 7

C
Capabilities 320

Capabilities of threshold gate 356

Characteristic equation 217, 225, 227, 231,
234, 236, 256

Checkers 147

Checksums 35, 38

Circuits with latches 326, 331

Clock 207, 212, 215, 216, 217, 218, 220,
221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231,
236, 239, 252, 253, 255, 258, 259

Clock frequency 324, 325

Clock period 324

Clock skew 322

Clock width 324

Clocked D flip-flop 221, 222, 259

Clocked flip-flops 215

Clocked sequential circuit 207, 212, 234, 239,
252, 324, 325

Code converter 143

Code generators 303

Codes 1, 8, 9, 29, 30, 31, 32, 33, 34, 39, 40, 44, 45

Combinational circuit 135, 136, 137, 138,
140, 141, 150, 155, 158, 161, 163, 168, 171, 173,

174, 178, 179, 180

Combinational circuit design procedure 136

Combinational logic circuits 135

Commutating law 61

Compatible 342, 343, 344, 348, 349

Complements law 61

Complex PLDs (CPLDs) 199

Complex programmable logic devices (CPLD)
199

Conditional output box 365

Consensus law 62

Control 364

Control design 378

Control subsystem 364

Control unit 377

Counter reset method 277

Counters 260, 267, 268, 269, 277, 278, 285,
289, 297, 303, 304, 305

CPLDs 183, 199, 200, 201, 203

Critical race 336, 337, 338, 340, 344, 345,
350, 352

Cycle 324, 337, 351, 352

Cyclic codes 44, 45

Cyclic redundancy check 35, 36

D
D Flip-flop 213

Data bus 260

Data organization 3

Data processing 364

Data processing unit 377

Data register 260

De Morgan’s Law 61

Decade counter 281, 282, 283, 288, 289, 302, 310

Decimal 1, 2, 7, 8, 9, 20, 27, 30, 31, 32, 34

Decimal adder 168

Decimal system 1

Decision box 365

Decoder 153, 154, 155, 158, 159, 161, 182

Decoders (Demultiplexers) 153

INDEX 387

Demultiplexer 153, 154, 158, 180, 182

Demux 154, 155, 182

Design of synchronous counters 289

Design procedure 136, 143, 150, 155

Digital design 57

Digital multiplexer (MUX) 150

Diminished radix complement 23

Distributive law 60, 61, 70

Don’t care map entries 118

Double words 6

Duality 61, 62, 63, 72, 105

Duty cycle 215, 324

Dynamic hazard 175, 178

E
EBCDIC Alphanumeric code 47

Edge trigger 224

Edges 365

Electrically programmable ROMs (EPROMs) 184

Eliminating a static-0 hazard 178

Eliminating a static-1 hazard 177

Encoders 161

Erasable ROMs (EPROMs) 184

Error correcting codes 39

Error detecting codes 35, 39

Essential hazard 178, 344

Essential implicants 117

Excitation table 231

Exclusive NOR 85

Exclusive NOR gate 85

Exclusive OR 82

Exclusive OR gate 78, 82

F
FAST adder 166

Feedback counters 304

Field programmable gate arrays (FPGAs)
183, 200

Field programmable ROMs (PROMs) 184

Field-programmable logic 190

Field-programmable logic array (FPLA) 190

Finite state machines (FSM) 312

Five variable K-map 119

Flip-flop 207, 208, 209, 210, 211, 212, 213, 214,
215, 216, 217, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 231, 234,
236, 237, 239, 240, 241, 251, 253, 255, 258, 259

Flip-flop conversions 232

Flow chart 365

Flow table 330, 331, 333, 334, 337, 340,
342, 343, 344, 345, 346, 347, 348, 349, 350, 352

Four variable K-map 114, 115

Frequency dividers 230, 303, 304

FSM 314, 316

Full adder 138, 140, 157, 158, 163, 164, 165,
166, 168, 179

Full subtractor 141, 142, 143

Fundamental mode 325

Fundamental mode asynchronous sequential
circuit 325, 327

Fundamental mode circuits 326

G
Gate 72

Gate definition 72

Generic array logic (GAL) 198

Glitches 173

Glitches (spikes) 173, 174, 179

Graph 343

Gray 33

Gray code 33, 34, 35

Gray to binary conversion 35

H
Half adder 137, 368

Half subtractor 140, 141, 142, 143

Hamming code 41, 42, 43, 45

Hamming distance 40

Hardware algorithm 364, 365

Hazard 173, 174, 175, 176, 177, 178, 179, 181

388 DIGITAL LOGIC CIRCUITS

Hazard-free realization 345

Hazards 173

Hexadecimal 1, 4, 5, 8, 10, 24, 51, 52

Hexadecimal numbering system 8

Hold time 229

Huntington postulates 59, 60, 61

I
I/O blocks 201

IC 74193 310

IC 7490 A 310

Input state variables 328

Interconnect 201, 203, 204

Intersection law 61

Inverter 65, 76, 77, 78, 79, 80, 86, 88, 92, 93, 94

Involution law 61

Isobaric functions 359

J
JK flip-flops 225, 227

Johnson counter 299, 300, 302, 303

K
Karnaugh 107, 117, 119, 131, 132, 133

Karnaugh MAP (K-map) 107

L
Latch 209, 211, 212, 213, 214, 215, 216, 221, 227,
255, 256, 258

Level (pulse) trigger 224

Limitations of finite state machines 320

Limitations of T-gate 363

Linear separability 360

Lockout 295

Logic 57, 58, 59, 61, 65, 66, 71, 72, 73, 74, 76,
77, 78, 79, 80, 82, 84, 85, 86, 88, 89, 90, 91,
92, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105

Logic adjacency 106

Logic block 201

Logic designation 71

Logic gates 88, 89, 90

Logic gating method 277

Logical adjancy 62

Longitudinal redundancy check 35, 36

Look-ahead carry generator 165, 166, 167

Lookup tables (LUT) 201

LSI 217

LSI circuits 149

M
Magnitude comparator 171, 172, 173

Mask programmed ROMs 184

Master clock generator 373

Master-slave 228

Maxterm 67

Mealy machine 314

Memory elements 206, 207

Merger diagram 340, 343, 348, 349

Metastability 323

Minimization 106

Minimization using K-map 110

Minimum distance 40

Minterm 67

Minterm and maxterm 67

Mod-3 290

Mod-3 counter 278, 279, 280, 285, 286

Mod-3 synchronous counter 290

Mod-5 counter 279, 280, 286, 287, 291, 292, 293

Mod-6 counter 293

Modes of operation 325

Modulo 267, 279, 285, 309

Modulo counter 309

Modulus counters 277

Moore machines 314

MSI 217

Multi output minimization 123

Multi-gate synthesis 363

Multiple inputs 86

Multiplexer control 379

MUX 150, 151, 152, 153, 154, 155, 156, 157, 159,
160, 182

INDEX 389

N
Nand 78

Nand and NOR Implementation 91

Nand gate 78, 79, 80, 84, 86, 89, 91, 92, 93,
98, 99, 100, 102, 103

Nand gate flip-flop 211

Nand gate latch 211, 212

Negative logic 72

Negative numbers 15

Next state 206, 214, 215, 217, 221, 227, 231,
234, 236, 237, 239, 242, 250, 251, 252, 253, 255

Nibble 1, 3, 4, 5, 6, 27, 28, 29

Non-weighted codes 30, 33

Noncritical race 336

NOR gate 78, 80, 81, 82, 84, 85, 86, 87, 89, 90,
91, 93, 94, 98, 99, 102, 103

NOR latch 209, 211

Numbering system 1

O
Octal number 7, 10, 51, 56

Octal numbering system 7

OR gate 65, 74, 75, 76, 78, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 98, 99, 100, 102

P
Parallel adder 163, 164, 165, 166, 167, 168, 170

Parallel adder/subtractor 167, 168

Parallel data storage 230

Parallel in-parallel out shift registers 265

Parity bit 35, 36, 40, 44

Parity check 35, 148

Parity generators 147

Period and sequence generators 303

PLA controls 379, 381

PLA program table 192

Positive and negative logic 71

Positive logic 72

Postulates 59, 60, 61

Present state 206, 207, 214, 215, 217, 222, 227,
231, 234, 236, 237, 239, 242, 250, 251, 255

Preset 261, 274, 297, 298, 305, 310

Prime 117

Prime and essential implicants 117

Primitive flow 331, 340, 342, 343, 344, 348, 349

Primitive flow table 331, 340, 342, 343, 348, 349

Primitive state table 244

Priority encoder 162

Product of sums 66, 70

Product term 65, 66, 69

Product-of-maxterms 69

Programmable array logic (PAL) 195

Programmable logic arrays (PLAs) 190

Programmable logic devices (PLDs) 183

Programmable Read-Only Memory (PROM) 190

Propagation delay 165

Propagation delay time 229

Pseudo-random sequence generators 306

Pulse mode 325

Pulse mode asynchronous sequential circuit
325, 326

Pulse-mode circuits 337

Q
Quine-McCluskey (Tabular) method 124

R
r’s complement 23, 24

r’s complement and (r – 1)’s complement 23

Race 323, 336, 337, 338, 340, 344, 345, 350, 352

Race around 223, 224, 226, 227, 228

Race around condition 223, 228

Races 336

Radix complement 23

Read only memory (ROM) 183

Realization of threshold gate 355

Redundancy 35

Redundant bits 41, 44, 45

Reflective 33

Reflective code 33

Register operation 367

390 DIGITAL LOGIC CIRCUITS

Registers 267

Reset 261, 263, 264, 268, 269, 272, 274, 275,
276, 277, 278, 279, 280, 281, 282, 283, 284, 285,
286, 287, 288, 290, 297, 298, 299, 300, 301, 305, 310

Reset state 209, 210, 211, 214, 218, 241

Reversible shift register 266

Ring counter 266, 297, 298, 299, 300, 304, 311

Ripple counter 267, 268, 269, 270, 275, 283

ROM 183

RS flip-Flop 209

S
Self complementing 33

Self complementing BCD codes 33

Sequence detector 246, 371

Sequence generators 303, 306, 308

Sequential circuits 206, 207, 212, 231, 234, 239,
260, 266, 267

Serial adder 164

Serial and parallel adders 163

Serial binary adder 244

Serial In–Serial out shift registers 263, 264

Set state 209, 210, 211, 214, 218, 222, 223, 241

Set-reset latch 209

Set-up time 229

Shift register 260, 261, 262, 263, 265, 266, 297,
301, 302, 304, 307, 310, 311

Signed arithmetic 22

Signed complement representation 19, 20

Signed magnitude representation 19

Signed complement 20

Signed-Magnitude 19

Six variable K-map 121

Spikes 173, 174, 179

SPLDs 195, 197, 198, 199, 200, 203
Stable state 207, 209, 210, 215

Standard forms 69, 71

State 206, 207, 208, 209, 210, 211, 213, 214, 215,
216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228,
231, 232, 233, 234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 250, 251, 252, 253, 254, 255, 256, 258

State assignment 245

State box 365

State diagram 239

State reduction 241

State table 239

State variables 328, 337, 339, 345, 347

States 324, 328, 329, 330, 331, 334, 336, 337,
338, 340, 341, 342, 343, 344, 345, 348, 349,
350, 352

Static hazard 175, 177, 178, 181

Straight binary coding 30

Subtractors 140, 142

Sum of minterms 68, 69, 98, 105

Sum of products 66, 69

Sum term 66, 69, 70

Synchronous 260, 261, 266, 267, 268, 275,
276, 278, 281,283, 286, 288, 289, 290, 291, 309, 310, 311,
322, 323, 324

Synchronous counter 267, 268, 275, 281, 283,
289, 290, 291, 310, 311

Synchronous sequential circuit 207

Synthesis of threshold functions 361

System clock generator 207

T
T gate 353

Tabular 124

Tautology law 61

Threshold element 353

Threshold function 358, 359

Threshold logic 353

Toggle switch 207, 222, 223, 224, 226

Total state 328

Transition table 329, 330, 331, 332, 333,
334, 336, 339, 340, 350, 351

Trigger 224

Triggering of flip-flops 224

Truth table 58, 59, 74, 77, 79, 80, 86, 209, 210,
211,212, 214, 215, 217, 220, 221, 222, 225, 226,
231, 239, 253, 258

Types of hazards 175

INDEX 391

U
Unate functions 359

Union law 61

Unit distance code 33

Universal gates 78, 84, 91

Unused codes 31

Up-counter 267, 268, 270, 271, 272, 273, 288,
309, 310

Up-Down counters 273

W
Weighted binary codes 30

Words 1, 3, 6, 30, 31, 32, 38, 40, 45, 46

X
Xilinx 201, 202

XNOR 85

XOR function 83

XOR gate 82

XS-3 to BCD code converter 145, 147

	Preface
	Acknowledgement
	Contents
	Chapter 1. Number Systems and Codes
	1.0 Introduction
	1.1 A Review of The Decimal System
	1.2 Binary Numbering System
	1.2.1 Binary to Decimal Conversion
	1.2.2 Decimal to Binary Conversion
	1.2.3 Binary Formats
	1.2.4 Data Organization

	1.3 Octal Numbering System
	1.3.1 Octal to Decimal, Decimal to Octal Conversion
	1.3.2 Octal to Binary, Binary to Octal Conversion

	1.4 Hexadecimal Numbering System
	1.4.1 Hex to Decimal and Decimal to Hex Conversion
	1.4.2 Hex to Binary and Binary to Hex Conversion
	1.4.3 Hex to Octal and Octal to Hex Conversion

	1.5 Range to Number Representation
	1.6 Binary Arithmetic
	1.7 Negative Numbers and Their Arithmetic
	1.7.1 1's and 2's Complement
	1.7.2 Subtraction Using 1's and 2's Complement
	1.7.3 Signed Binary Representation
	1.7.4 Arithmetic Overflow
	1.7.5 9's and 10's Complement
	1.7.6 r's Complement and (r-1)'s Complement
	1.7.7 Rules for Subtraction using (r-1)'s Complement
	1.7.8 Rules for Subtraction using r's Complement

	1.8 Binary Coded Decimal (BCD) and Its Arithmetic
	1.9 Codes
	1.9.1 Weighted Binary Codes
	1.9.2 Non-Weighted Codes
	1.9.3 Error Detecting Codes
	1.9.4 Error Correcting Codes
	1.9.5 Hamming Code
	1.9.6 Cyclic Codes
	1.9.7 Alphanumeric Codes

	1.10 Solved Examples
	1.11 Exercises

	Chapter 2. Digital Design Fundamentals Boolean Algebra and Logic Gates
	2.0 Introductory Concepts of Digital Design
	2.1 Truth Table
	2.2 Axiomatic Systems and Boolean Algebra
	2.2.1 Huntington's Postulates
	2.2.2 Basic Theorems and Properties of Boolean Algebra

	2.3 Boolean Functions
	2.3.1 Transformation of Boolean Function into Logic Diagram
	2.3.2 Complement of a Function

	2.4 Representation of Boolean Functions
	2.4.1 Minterm and Maxterm Realization
	2.4.2 Standard Forms
	2.4.3 Conversion between Standard Forms

	2.5 Logic Gates
	2.5.1 Positive and Negative Logic Designation
	2.5.2 Gate Definition
	2.5.3 The AND Gate
	2.5.4 The OR Gate
	2.5.5 The Inverter and Buffer
	2.5.6 Other Gates and Their Functions
	2.5.7 Universal Gates
	2.5.8 The Exclusive OR Gate
	2.5.9 The Exclusive NOR gate
	2.5.10 Extension to Multiple Inputs in Logic Gates

	2.6 NAND and NOR Implementation
	2.6.1 Implementation of a Multistage (or Multistage (or Multilevel) Digial Circuit using NAND Gates Only
	2.6.2 Implementation of a Multilevel Digital Circuit using NOR Gates only

	2.7 Exercise

	Chapter 3. Boolean Function Minimization Techniques
	3.0 Introduction
	3.1 Minimization Using Postulates and Theorem of Boolean Algebra
	3.2 Minimization Using Karnaugh Map (K-Map) Method
	3.2.1 Two and Three Variable K Map
	3.2.2 Boolean Expression Minimization Using K-Map
	3.2.3 Minimization in Products of Sums Form
	3.2.4 Four Variable K-Map
	3.2.5 Prime and Essential Implicants
	3.2.6 Don't Care Map Entries
	3.2.7 Five Variable K-Map
	3.2.8 Six Variable K-Map
	3.2.9 Multi Output Minimization

	3.3 Minimization Using Quine-McCluskey (Tabular) Method
	3.4 Exercise

	Chapter 4. Combinational Logic
	4.0 Introduction
	4.1 Arithmatic Circuits
	4.1.1 Adders
	4.1.2 Subtractors
	4.1.3 Code Converters
	4.1.4 Parity Generators and Checkers

	4.2 MSI and LSI Circuits
	4.2.1 The Digital Multiplexers
	4.2.2 Decoders (Demultiplexers)
	4.2.3 Encoders
	4.2.4 Serial and Parallel Adders
	4.2.5 Decimal Adder
	4.2.6 Magnitude Comparator

	4.3 Hazards
	4.3.1 Hazards in Combinational Circuits
	4.3.2 Types of Hazards
	4.3.3 Hazard Free Realizations
	4.3.4 Essential Hazard
	4.3.5 Significance of Hazards

	4.4 Exercise

	Chapter 5. Programmable Logic Devices
	5.0 Introduction
	5.1 Read Only Memory (ROM)
	5.1.1 Realizing Logical Functions with ROM

	5.2 Programmable Logic Arrays
	5.2.1 Realizing Logical Functions with PLAs

	5.3 Programmable Arrary Logic (PAL)
	5.3.1 Commercially Available SPLDs
	5.3.2 Generic Array Logic (GAL)
	5.3.3 Applications of PLDs

	5.4 Complex Programmable Logic Devices (CPLD)
	5.4.1 Applications of CPLDs

	5.5 Field-Programmable Gate Arrays (FPGA)
	5.5.1 Applications of FPGAs

	5.6 User-Programmable Switch Technologies
	5.7 Exercise

	Chapter 6. Synchronous (Clocked) Sequential Circuits
	6.0 Introduction
	6.1 Flip-Flops
	6.1.1 RS Flip-Flop
	6.1.2 Flip-Flop
	6.1.3 Clocked Flip-Flops
	6.1.4 Triggering of Flip-Flops
	6.1.5 JK and T Flip-Flops
	6.1.6 Race Around Condition and Solution
	6.1.7 Operating Characteristics of Flip-Flops
	6.1.8 Flip-Flop Applications

	6.2 Flip-Flop Excitation Table
	6.3 Flip-Flop Conversions
	6.4 Analysis of Clocked Sequential Circuits
	6.5 Design of Clocked Sequential Circuits
	6.6 Design Examples
	6.7 Solved Examples
	6.8 Exercise

	Chapter 7. Shift Registers and Counters
	7.0 Introduction
	7.1 Shift Registers
	7.2 Modes of Operations
	7.2.1 Serial In-Serial Out Shift Registers
	7.2.2 Serial In-Parallel Out Shift Registers
	7.2.3 Parallel In-Serial Out Shift Registers
	7.2.4 Parallel In-Parallel Out Shift Registers
	7.2.5 Bidirectional Shift Registers (Universal Shift Register)

	7.3 Applications of Shift Registers
	7.3.1 To Produce Time Delay
	7.3.2 Simplify Combinational Logic
	7.3.3 To Convert Serial Data to Parallel Data

	7.4 Counters
	7.4.1 Introduction
	7.4.2 Binary Ripple Up-Counter
	7.4.3 4-Bit Binary Ripple Up-Counter
	7.4.5 Up-Down Counters
	7.4.6 Reset and Preset Functions
	7.4.7 Universal Synchronous Counter Stage
	7.4.8 Modulus Counters
	7.4.9 Asynchronous Counters (Counter Reset Method)
	7.4.10 Logic Gating Method
	7.4.11 Design of Synchronous Counters
	7.4.12 Lockout
	7.4.13 Ring Counter
	7.4.14 Johnson Counter
	7.4.15 Ring Counter Applications

	7.5 Exercise

	Chapter 8. Introductory Concept of Finite State Machines
	8.0 Introduction
	8.1 General Model of FSM
	8.2 Classification of FSM (Mealy & Moore Models)
	8.3 Design of FSM
	8.4 Design Examples
	8.5 Capabilities and Limitations of Finite State Machines
	8.6 Exercise

	Chpater 9. Asynchronous Sequential Logic
	9.0 Introduction
	9.1 Difference Between Synchronous and Asynchronous
	9.2 Modes of Operation
	9.3 Analysis of Asynchronous Sequential Machines
	9.3.1 Fundamental Mode Circuits
	9.3.2 Circuits without Latches
	9.3.3 Transition Table
	9.3.4 Flow Table
	9.3.5 Circuits with Latches
	9.3.6 Races and Cycles
	9.3.7 Pulse-mode Circuits

	9.4 Asynchronous Sequential Circuit Design
	9.4.1 Design Steps
	9.4.2 Reduction of States
	9.4.3 Merger Diagram

	9.5 Essential Hazards
	9.6 Hazard-Free Realization Using S-R Flip-Flops
	9.7 Solved Examples
	9.8 Exercise

	Chapter 10. Threshold Logic
	10.0 Introduction
	10.1 The Threshold Element Or T Gate
	10.2 Physical Realization of Threshold Gate
	10.3 Capabilities of Threshold Gate
	10.4 Properties of Threshold Functions
	10.5 Synthesis of Threshold Functions
	10.6 Multi-Gate Synthesis
	10.7 Limitations of T-Gate
	10.8 Exercise

	Chapter 11. Algorithmic State Machine
	11.0 Introduction
	11.1 Design of Digital System
	11.2 The Elements and Structure of The ASM Chart
	11.2.1 ASM Block
	11.2.2 Register Operation
	11.2.3 Example ASM Charts

	11.3 ASM Timing Considerations
	11.4 Data Processing Unit
	11.5 Control Design
	11.5.1 Multiplexer Control
	11.5.2 PLA Control

	11.6 Exercise
	References

	Index

